Files
2023-08-24 17:49:47 -05:00

987 lines
31 KiB
Python

import numpy as np
import pytest
import shapely
from shapely import (
Geometry,
GeometryCollection,
GEOSException,
LinearRing,
LineString,
MultiLineString,
MultiPoint,
MultiPolygon,
Point,
Polygon,
)
from shapely.testing import assert_geometries_equal
from .common import (
all_types,
empty,
empty_line_string,
empty_point,
empty_polygon,
ignore_invalid,
line_string,
multi_point,
point,
point_z,
)
CONSTRUCTIVE_NO_ARGS = (
shapely.boundary,
shapely.centroid,
shapely.convex_hull,
pytest.param(
shapely.concave_hull,
marks=pytest.mark.skipif(
shapely.geos_version < (3, 11, 0), reason="GEOS < 3.11"
),
),
shapely.envelope,
shapely.extract_unique_points,
shapely.node,
shapely.normalize,
shapely.point_on_surface,
)
CONSTRUCTIVE_FLOAT_ARG = (
shapely.buffer,
shapely.offset_curve,
shapely.delaunay_triangles,
shapely.simplify,
shapely.voronoi_polygons,
)
@pytest.mark.parametrize("geometry", all_types)
@pytest.mark.parametrize("func", CONSTRUCTIVE_NO_ARGS)
def test_no_args_array(geometry, func):
actual = func([geometry, geometry])
assert actual.shape == (2,)
assert actual[0] is None or isinstance(actual[0], Geometry)
@pytest.mark.parametrize("geometry", all_types)
@pytest.mark.parametrize("func", CONSTRUCTIVE_FLOAT_ARG)
def test_float_arg_array(geometry, func):
if (
func is shapely.offset_curve
and shapely.get_type_id(geometry) not in [1, 2]
and shapely.geos_version < (3, 11, 0)
):
with pytest.raises(GEOSException, match="only accept linestrings"):
func([geometry, geometry], 0.0)
return
# voronoi_polygons emits an "invalid" warning when supplied with an empty
# point (see https://github.com/libgeos/geos/issues/515)
with ignore_invalid(
func is shapely.voronoi_polygons
and shapely.get_type_id(geometry) == 0
and shapely.geos_version < (3, 12, 0)
):
actual = func([geometry, geometry], 0.0)
assert actual.shape == (2,)
assert isinstance(actual[0], Geometry)
@pytest.mark.parametrize("geometry", all_types)
@pytest.mark.parametrize("reference", all_types)
def test_snap_array(geometry, reference):
actual = shapely.snap([geometry, geometry], [reference, reference], tolerance=1.0)
assert actual.shape == (2,)
assert isinstance(actual[0], Geometry)
@pytest.mark.parametrize("func", CONSTRUCTIVE_NO_ARGS)
def test_no_args_missing(func):
actual = func(None)
assert actual is None
@pytest.mark.parametrize("func", CONSTRUCTIVE_FLOAT_ARG)
def test_float_arg_missing(func):
actual = func(None, 1.0)
assert actual is None
@pytest.mark.parametrize("geometry", all_types)
@pytest.mark.parametrize("func", CONSTRUCTIVE_FLOAT_ARG)
def test_float_arg_nan(geometry, func):
actual = func(geometry, float("nan"))
assert actual is None
def test_buffer_cap_style_invalid():
with pytest.raises(ValueError, match="'invalid' is not a valid option"):
shapely.buffer(point, 1, cap_style="invalid")
def test_buffer_join_style_invalid():
with pytest.raises(ValueError, match="'invalid' is not a valid option"):
shapely.buffer(point, 1, join_style="invalid")
def test_snap_none():
actual = shapely.snap(None, point, tolerance=1.0)
assert actual is None
@pytest.mark.parametrize("geometry", all_types)
def test_snap_nan_float(geometry):
actual = shapely.snap(geometry, point, tolerance=np.nan)
assert actual is None
@pytest.mark.skipif(shapely.geos_version < (3, 8, 0), reason="GEOS < 3.8")
def test_build_area_none():
actual = shapely.build_area(None)
assert actual is None
@pytest.mark.skipif(shapely.geos_version < (3, 8, 0), reason="GEOS < 3.8")
@pytest.mark.parametrize(
"geom,expected",
[
(point, empty), # a point has no area
(line_string, empty), # a line string has no area
# geometry collection of two polygons are combined into one
(
GeometryCollection(
[
Polygon([(0, 0), (0, 3), (3, 3), (3, 0), (0, 0)]),
Polygon([(1, 1), (2, 2), (1, 2), (1, 1)]),
]
),
Polygon(
[(0, 0), (0, 3), (3, 3), (3, 0), (0, 0)],
holes=[[(1, 1), (2, 2), (1, 2), (1, 1)]],
),
),
(empty, empty),
([empty], [empty]),
],
)
def test_build_area(geom, expected):
actual = shapely.build_area(geom)
assert actual is not expected
assert actual == expected
@pytest.mark.skipif(shapely.geos_version < (3, 8, 0), reason="GEOS < 3.8")
def test_make_valid_none():
actual = shapely.make_valid(None)
assert actual is None
@pytest.mark.skipif(shapely.geos_version < (3, 8, 0), reason="GEOS < 3.8")
@pytest.mark.parametrize(
"geom,expected",
[
(point, point), # a valid geometry stays the same (but is copied)
# an L shaped polygon without area is converted to a multilinestring
(
Polygon([(0, 0), (1, 1), (1, 2), (1, 1), (0, 0)]),
MultiLineString([((1, 1), (1, 2)), ((0, 0), (1, 1))]),
),
# a polygon with self-intersection (bowtie) is converted into polygons
(
Polygon([(0, 0), (2, 2), (2, 0), (0, 2), (0, 0)]),
MultiPolygon(
[
Polygon([(1, 1), (2, 2), (2, 0), (1, 1)]),
Polygon([(0, 0), (0, 2), (1, 1), (0, 0)]),
]
),
),
(empty, empty),
([empty], [empty]),
],
)
def test_make_valid(geom, expected):
actual = shapely.make_valid(geom)
assert actual is not expected
# normalize needed to handle variation in output across GEOS versions
assert shapely.normalize(actual) == expected
@pytest.mark.skipif(shapely.geos_version < (3, 8, 0), reason="GEOS < 3.8")
@pytest.mark.parametrize(
"geom,expected",
[
(all_types, all_types),
# first polygon is valid, second polygon has self-intersection
(
[
Polygon([(0, 0), (2, 2), (0, 2), (0, 0)]),
Polygon([(0, 0), (2, 2), (2, 0), (0, 2), (0, 0)]),
],
[
Polygon([(0, 0), (2, 2), (0, 2), (0, 0)]),
MultiPolygon(
[
Polygon([(1, 1), (0, 0), (0, 2), (1, 1)]),
Polygon([(1, 1), (2, 2), (2, 0), (1, 1)]),
]
),
],
),
([point, None, empty], [point, None, empty]),
],
)
def test_make_valid_1d(geom, expected):
actual = shapely.make_valid(geom)
# normalize needed to handle variation in output across GEOS versions
assert np.all(shapely.normalize(actual) == shapely.normalize(expected))
@pytest.mark.parametrize(
"geom,expected",
[
(point, point), # a point is always in normalized form
# order coordinates of linestrings and parts of multi-linestring
(
MultiLineString([((1, 1), (0, 0)), ((1, 1), (1, 2))]),
MultiLineString([((1, 1), (1, 2)), ((0, 0), (1, 1))]),
),
],
)
def test_normalize(geom, expected):
actual = shapely.normalize(geom)
assert actual == expected
def test_offset_curve_empty():
with ignore_invalid(shapely.geos_version < (3, 12, 0)):
# Empty geometries emit an "invalid" warning
# (see https://github.com/libgeos/geos/issues/515)
actual = shapely.offset_curve(empty_line_string, 2.0)
assert shapely.is_empty(actual)
def test_offset_curve_distance_array():
# check that kwargs are passed through
result = shapely.offset_curve([line_string, line_string], [-2.0, -3.0])
assert result[0] == shapely.offset_curve(line_string, -2.0)
assert result[1] == shapely.offset_curve(line_string, -3.0)
def test_offset_curve_kwargs():
# check that kwargs are passed through
result1 = shapely.offset_curve(
line_string, -2.0, quad_segs=2, join_style="mitre", mitre_limit=2.0
)
result2 = shapely.offset_curve(line_string, -2.0)
assert result1 != result2
def test_offset_curve_non_scalar_kwargs():
msg = "only accepts scalar values"
with pytest.raises(TypeError, match=msg):
shapely.offset_curve([line_string, line_string], 1, quad_segs=np.array([8, 9]))
with pytest.raises(TypeError, match=msg):
shapely.offset_curve(
[line_string, line_string], 1, join_style=["round", "bevel"]
)
with pytest.raises(TypeError, match=msg):
shapely.offset_curve([line_string, line_string], 1, mitre_limit=[5.0, 6.0])
def test_offset_curve_join_style_invalid():
with pytest.raises(ValueError, match="'invalid' is not a valid option"):
shapely.offset_curve(line_string, 1.0, join_style="invalid")
@pytest.mark.skipif(shapely.geos_version < (3, 11, 0), reason="GEOS < 3.11")
@pytest.mark.parametrize(
"geom,expected",
[
(LineString([(0, 0), (0, 0), (1, 0)]), LineString([(0, 0), (1, 0)])),
(
LinearRing([(0, 0), (1, 2), (1, 2), (1, 3), (0, 0)]),
LinearRing([(0, 0), (1, 2), (1, 3), (0, 0)]),
),
(
Polygon([(0, 0), (0, 0), (1, 0), (1, 1), (1, 0), (0, 0)]),
Polygon([(0, 0), (1, 0), (1, 1), (1, 0), (0, 0)]),
),
(
Polygon(
[(0, 0), (10, 0), (10, 10), (0, 10), (0, 0)],
holes=[[(2, 2), (2, 2), (2, 4), (4, 4), (4, 2), (2, 2)]],
),
Polygon(
[(0, 0), (10, 0), (10, 10), (0, 10), (0, 0)],
holes=[[(2, 2), (2, 4), (4, 4), (4, 2), (2, 2)]],
),
),
(
MultiPolygon(
[
Polygon([(0, 0), (0, 0), (1, 0), (1, 1), (0, 1), (0, 0)]),
Polygon([(2, 2), (2, 2), (2, 3), (3, 3), (3, 2), (2, 2)]),
]
),
MultiPolygon(
[
Polygon([(0, 0), (1, 0), (1, 1), (0, 1), (0, 0)]),
Polygon([(2, 2), (2, 3), (3, 3), (3, 2), (2, 2)]),
]
),
),
# points are unchanged
(point, point),
(point_z, point_z),
(multi_point, multi_point),
# empty geometries are unchanged
(empty_point, empty_point),
(empty_line_string, empty_line_string),
(empty, empty),
(empty_polygon, empty_polygon),
],
)
def test_remove_repeated_points(geom, expected):
assert_geometries_equal(shapely.remove_repeated_points(geom, 0), expected)
@pytest.mark.skipif(shapely.geos_version < (3, 12, 0), reason="GEOS < 3.12")
@pytest.mark.parametrize(
"geom, tolerance", [[Polygon([(0, 0), (1, 0), (1, 1), (0, 1), (0, 0)]), 2]]
)
def test_remove_repeated_points_invalid_result(geom, tolerance):
# Requiring GEOS 3.12 instead of 3.11
# (GEOS 3.11 had a bug causing this to intermittently not fail)
with pytest.raises(shapely.GEOSException, match="Invalid number of points"):
shapely.remove_repeated_points(geom, tolerance)
@pytest.mark.skipif(shapely.geos_version < (3, 11, 0), reason="GEOS < 3.11")
def test_remove_repeated_points_none():
assert shapely.remove_repeated_points(None, 1) is None
assert shapely.remove_repeated_points([None], 1).tolist() == [None]
geometry = LineString([(0, 0), (0, 0), (1, 1)])
expected = LineString([(0, 0), (1, 1)])
result = shapely.remove_repeated_points([None, geometry], 1)
assert result[0] is None
assert_geometries_equal(result[1], expected)
@pytest.mark.skipif(shapely.geos_version < (3, 11, 0), reason="GEOS < 3.11")
@pytest.mark.parametrize("geom, tolerance", [("Not a geometry", 1), (1, 1)])
def test_remove_repeated_points_invalid_type(geom, tolerance):
with pytest.raises(TypeError, match="One of the arguments is of incorrect type"):
shapely.remove_repeated_points(geom, tolerance)
@pytest.mark.skipif(shapely.geos_version < (3, 7, 0), reason="GEOS < 3.7")
@pytest.mark.parametrize(
"geom,expected",
[
(LineString([(0, 0), (1, 2)]), LineString([(1, 2), (0, 0)])),
(
LinearRing([(0, 0), (1, 2), (1, 3), (0, 0)]),
LinearRing([(0, 0), (1, 3), (1, 2), (0, 0)]),
),
(
Polygon([(0, 0), (1, 0), (1, 1), (0, 1), (0, 0)]),
Polygon([(0, 0), (0, 1), (1, 1), (1, 0), (0, 0)]),
),
(
Polygon(
[(0, 0), (10, 0), (10, 10), (0, 10), (0, 0)],
holes=[[(2, 2), (2, 4), (4, 4), (4, 2), (2, 2)]],
),
Polygon(
[(0, 0), (0, 10), (10, 10), (10, 0), (0, 0)],
holes=[[(2, 2), (4, 2), (4, 4), (2, 4), (2, 2)]],
),
),
pytest.param(
MultiLineString([[(0, 0), (1, 2)], [(3, 3), (4, 4)]]),
MultiLineString([[(1, 2), (0, 0)], [(4, 4), (3, 3)]]),
marks=pytest.mark.skipif(
shapely.geos_version < (3, 8, 1), reason="GEOS < 3.8.1"
),
),
(
MultiPolygon(
[
Polygon([(0, 0), (1, 0), (1, 1), (0, 1), (0, 0)]),
Polygon([(2, 2), (2, 3), (3, 3), (3, 2), (2, 2)]),
]
),
MultiPolygon(
[
Polygon([(0, 0), (0, 1), (1, 1), (1, 0), (0, 0)]),
Polygon([(2, 2), (3, 2), (3, 3), (2, 3), (2, 2)]),
]
),
),
# points are unchanged
(point, point),
(point_z, point_z),
(multi_point, multi_point),
# empty geometries are unchanged
(empty_point, empty_point),
(empty_line_string, empty_line_string),
(empty, empty),
(empty_polygon, empty_polygon),
],
)
def test_reverse(geom, expected):
assert_geometries_equal(shapely.reverse(geom), expected)
@pytest.mark.skipif(shapely.geos_version < (3, 7, 0), reason="GEOS < 3.7")
def test_reverse_none():
assert shapely.reverse(None) is None
assert shapely.reverse([None]).tolist() == [None]
geometry = Polygon([(0, 0), (1, 0), (1, 1), (0, 1), (0, 0)])
expected = Polygon([(0, 0), (0, 1), (1, 1), (1, 0), (0, 0)])
result = shapely.reverse([None, geometry])
assert result[0] is None
assert_geometries_equal(result[1], expected)
@pytest.mark.skipif(shapely.geos_version < (3, 7, 0), reason="GEOS < 3.7")
@pytest.mark.parametrize("geom", ["Not a geometry", 1])
def test_reverse_invalid_type(geom):
with pytest.raises(TypeError, match="One of the arguments is of incorrect type"):
shapely.reverse(geom)
@pytest.mark.parametrize(
"geom,expected",
[
# Point outside
(Point(0, 0), GeometryCollection()),
# Point inside
(Point(15, 15), Point(15, 15)),
# Point on boundary
(Point(15, 10), GeometryCollection()),
# Line outside
(LineString([(0, 0), (-5, 5)]), GeometryCollection()),
# Line inside
(LineString([(15, 15), (16, 15)]), LineString([(15, 15), (16, 15)])),
# Line on boundary
(LineString([(10, 15), (10, 10), (15, 10)]), GeometryCollection()),
# Line splitting rectangle
(LineString([(10, 5), (25, 20)]), LineString([(15, 10), (20, 15)])),
],
)
def test_clip_by_rect(geom, expected):
actual = shapely.clip_by_rect(geom, 10, 10, 20, 20)
assert_geometries_equal(actual, expected)
@pytest.mark.parametrize(
"geom, rect, expected",
[
# Polygon hole (CCW) fully on rectangle boundary"""
(
Polygon(
((0, 0), (0, 30), (30, 30), (30, 0), (0, 0)),
holes=[((10, 10), (20, 10), (20, 20), (10, 20), (10, 10))],
),
(10, 10, 20, 20),
GeometryCollection(),
),
# Polygon hole (CW) fully on rectangle boundary"""
(
Polygon(
((0, 0), (0, 30), (30, 30), (30, 0), (0, 0)),
holes=[((10, 10), (10, 20), (20, 20), (20, 10), (10, 10))],
),
(10, 10, 20, 20),
GeometryCollection(),
),
# Polygon fully within rectangle"""
(
Polygon(
((1, 1), (1, 30), (30, 30), (30, 1), (1, 1)),
holes=[((10, 10), (20, 10), (20, 20), (10, 20), (10, 10))],
),
(0, 0, 40, 40),
Polygon(
((1, 1), (1, 30), (30, 30), (30, 1), (1, 1)),
holes=[((10, 10), (20, 10), (20, 20), (10, 20), (10, 10))],
),
),
# Polygon overlapping rectanglez
(
Polygon(
[(0, 0), (0, 30), (30, 30), (30, 0), (0, 0)],
holes=[[(10, 10), (20, 10), (20, 20), (10, 20), (10, 10)]],
),
(5, 5, 15, 15),
Polygon([(5, 5), (5, 15), (10, 15), (10, 10), (15, 10), (15, 5), (5, 5)]),
),
],
)
def test_clip_by_rect_polygon(geom, rect, expected):
actual = shapely.clip_by_rect(geom, *rect)
assert_geometries_equal(actual, expected)
@pytest.mark.parametrize("geometry", all_types)
def test_clip_by_rect_array(geometry):
actual = shapely.clip_by_rect([geometry, geometry], 0.0, 0.0, 1.0, 1.0)
assert actual.shape == (2,)
assert actual[0] is None or isinstance(actual[0], Geometry)
def test_clip_by_rect_missing():
actual = shapely.clip_by_rect(None, 0, 0, 1, 1)
assert actual is None
@pytest.mark.parametrize("geom", [empty, empty_line_string, empty_polygon])
def test_clip_by_rect_empty(geom):
# TODO empty point
actual = shapely.clip_by_rect(geom, 0, 0, 1, 1)
assert actual == GeometryCollection()
def test_clip_by_rect_non_scalar_kwargs():
msg = "only accepts scalar values"
with pytest.raises(TypeError, match=msg):
shapely.clip_by_rect([line_string, line_string], 0, 0, 1, np.array([0, 1]))
def test_polygonize():
lines = [
LineString([(0, 0), (1, 1)]),
LineString([(0, 0), (0, 1)]),
LineString([(0, 1), (1, 1)]),
LineString([(1, 1), (1, 0)]),
LineString([(1, 0), (0, 0)]),
LineString([(5, 5), (6, 6)]),
Point(0, 0),
None,
]
result = shapely.polygonize(lines)
assert shapely.get_type_id(result) == 7 # GeometryCollection
expected = GeometryCollection(
[
Polygon([(0, 0), (1, 1), (1, 0), (0, 0)]),
Polygon([(1, 1), (0, 0), (0, 1), (1, 1)]),
]
)
assert result == expected
def test_polygonize_array():
lines = [
LineString([(0, 0), (1, 1)]),
LineString([(0, 0), (0, 1)]),
LineString([(0, 1), (1, 1)]),
]
expected = GeometryCollection([Polygon([(1, 1), (0, 0), (0, 1), (1, 1)])])
result = shapely.polygonize(np.array(lines))
assert isinstance(result, shapely.Geometry)
assert result == expected
result = shapely.polygonize(np.array([lines]))
assert isinstance(result, np.ndarray)
assert result.shape == (1,)
assert result[0] == expected
arr = np.array([lines, lines])
assert arr.shape == (2, 3)
result = shapely.polygonize(arr)
assert isinstance(result, np.ndarray)
assert result.shape == (2,)
assert result[0] == expected
assert result[1] == expected
arr = np.array([[lines, lines], [lines, lines], [lines, lines]])
assert arr.shape == (3, 2, 3)
result = shapely.polygonize(arr)
assert isinstance(result, np.ndarray)
assert result.shape == (3, 2)
for res in result.flatten():
assert res == expected
@pytest.mark.skipif(
np.__version__ < "1.15",
reason="axis keyword for generalized ufunc introduced in np 1.15",
)
def test_polygonize_array_axis():
lines = [
LineString([(0, 0), (1, 1)]),
LineString([(0, 0), (0, 1)]),
LineString([(0, 1), (1, 1)]),
]
arr = np.array([lines, lines]) # shape (2, 3)
result = shapely.polygonize(arr, axis=1)
assert result.shape == (2,)
result = shapely.polygonize(arr, axis=0)
assert result.shape == (3,)
def test_polygonize_missing():
# set of geometries that is all missing
result = shapely.polygonize([None, None])
assert result == GeometryCollection()
def test_polygonize_full():
lines = [
None,
LineString([(0, 0), (1, 1)]),
LineString([(0, 0), (0, 1)]),
LineString([(0, 1), (1, 1)]),
LineString([(1, 1), (1, 0)]),
None,
LineString([(1, 0), (0, 0)]),
LineString([(5, 5), (6, 6)]),
LineString([(1, 1), (100, 100)]),
Point(0, 0),
None,
]
result = shapely.polygonize_full(lines)
assert len(result) == 4
assert all(shapely.get_type_id(geom) == 7 for geom in result) # GeometryCollection
polygons, cuts, dangles, invalid = result
expected_polygons = GeometryCollection(
[
Polygon([(0, 0), (1, 1), (1, 0), (0, 0)]),
Polygon([(1, 1), (0, 0), (0, 1), (1, 1)]),
]
)
assert polygons == expected_polygons
assert cuts == GeometryCollection()
expected_dangles = GeometryCollection(
[LineString([(1, 1), (100, 100)]), LineString([(5, 5), (6, 6)])]
)
assert dangles == expected_dangles
assert invalid == GeometryCollection()
def test_polygonize_full_array():
lines = [
LineString([(0, 0), (1, 1)]),
LineString([(0, 0), (0, 1)]),
LineString([(0, 1), (1, 1)]),
]
expected = GeometryCollection([Polygon([(1, 1), (0, 0), (0, 1), (1, 1)])])
result = shapely.polygonize_full(np.array(lines))
assert len(result) == 4
assert all(isinstance(geom, shapely.Geometry) for geom in result)
assert result[0] == expected
assert all(geom == GeometryCollection() for geom in result[1:])
result = shapely.polygonize_full(np.array([lines]))
assert len(result) == 4
assert all(isinstance(geom, np.ndarray) for geom in result)
assert all(geom.shape == (1,) for geom in result)
assert result[0][0] == expected
assert all(geom[0] == GeometryCollection() for geom in result[1:])
arr = np.array([lines, lines])
assert arr.shape == (2, 3)
result = shapely.polygonize_full(arr)
assert len(result) == 4
assert all(isinstance(arr, np.ndarray) for arr in result)
assert all(arr.shape == (2,) for arr in result)
assert result[0][0] == expected
assert result[0][1] == expected
assert all(g == GeometryCollection() for geom in result[1:] for g in geom)
arr = np.array([[lines, lines], [lines, lines], [lines, lines]])
assert arr.shape == (3, 2, 3)
result = shapely.polygonize_full(arr)
assert len(result) == 4
assert all(isinstance(arr, np.ndarray) for arr in result)
assert all(arr.shape == (3, 2) for arr in result)
for res in result[0].flatten():
assert res == expected
for arr in result[1:]:
for res in arr.flatten():
assert res == GeometryCollection()
@pytest.mark.skipif(
np.__version__ < "1.15",
reason="axis keyword for generalized ufunc introduced in np 1.15",
)
def test_polygonize_full_array_axis():
lines = [
LineString([(0, 0), (1, 1)]),
LineString([(0, 0), (0, 1)]),
LineString([(0, 1), (1, 1)]),
]
arr = np.array([lines, lines]) # shape (2, 3)
result = shapely.polygonize_full(arr, axis=1)
assert len(result) == 4
assert all(arr.shape == (2,) for arr in result)
result = shapely.polygonize_full(arr, axis=0)
assert len(result) == 4
assert all(arr.shape == (3,) for arr in result)
def test_polygonize_full_missing():
# set of geometries that is all missing
result = shapely.polygonize_full([None, None])
assert len(result) == 4
assert all(geom == GeometryCollection() for geom in result)
@pytest.mark.skipif(shapely.geos_version < (3, 10, 0), reason="GEOS < 3.10")
@pytest.mark.parametrize("geometry", all_types)
@pytest.mark.parametrize("max_segment_length", [-1, 0])
def test_segmentize_invalid_max_segment_length(geometry, max_segment_length):
with pytest.raises(GEOSException, match="IllegalArgumentException"):
shapely.segmentize(geometry, max_segment_length=max_segment_length)
@pytest.mark.skipif(shapely.geos_version < (3, 10, 0), reason="GEOS < 3.10")
@pytest.mark.parametrize("geometry", all_types)
def test_segmentize_max_segment_length_nan(geometry):
actual = shapely.segmentize(geometry, max_segment_length=np.nan)
assert actual is None
@pytest.mark.skipif(shapely.geos_version < (3, 10, 0), reason="GEOS < 3.10")
@pytest.mark.parametrize(
"geometry", [empty, empty_point, empty_line_string, empty_polygon]
)
def test_segmentize_empty(geometry):
actual = shapely.segmentize(geometry, max_segment_length=5)
assert_geometries_equal(actual, geometry)
@pytest.mark.skipif(shapely.geos_version < (3, 10, 0), reason="GEOS < 3.10")
@pytest.mark.parametrize("geometry", [point, point_z, multi_point])
def test_segmentize_no_change(geometry):
actual = shapely.segmentize(geometry, max_segment_length=5)
assert_geometries_equal(actual, geometry)
@pytest.mark.skipif(shapely.geos_version < (3, 10, 0), reason="GEOS < 3.10")
def test_segmentize_none():
assert shapely.segmentize(None, max_segment_length=5) is None
@pytest.mark.skipif(shapely.geos_version < (3, 10, 0), reason="GEOS < 3.10")
@pytest.mark.parametrize(
"geometry,tolerance, expected",
[
# tolerance greater than max edge length, no change
(
LineString([(0, 0), (0, 10)]),
20,
LineString([(0, 0), (0, 10)]),
),
(
Polygon([(0, 0), (10, 0), (10, 10), (0, 10), (0, 0)]),
20,
Polygon([(0, 0), (10, 0), (10, 10), (0, 10), (0, 0)]),
),
# tolerance causes one vertex per segment
(
LineString([(0, 0), (0, 10)]),
5,
LineString([(0, 0), (0, 5), (0, 10)]),
),
(
Polygon([(0, 0), (10, 0), (10, 10), (0, 10), (0, 0)]),
5,
Polygon(
[
(0, 0),
(5, 0),
(10, 0),
(10, 5),
(10, 10),
(5, 10),
(0, 10),
(0, 5),
(0, 0),
]
),
),
# ensure input arrays are broadcast correctly
(
[
LineString([(0, 0), (0, 10)]),
LineString([(0, 0), (0, 2)]),
],
5,
[
LineString([(0, 0), (0, 5), (0, 10)]),
LineString([(0, 0), (0, 2)]),
],
),
(
[
LineString([(0, 0), (0, 10)]),
LineString([(0, 0), (0, 2)]),
],
[5],
[
LineString([(0, 0), (0, 5), (0, 10)]),
LineString([(0, 0), (0, 2)]),
],
),
(
[
LineString([(0, 0), (0, 10)]),
LineString([(0, 0), (0, 2)]),
],
[5, 1.5],
[
LineString([(0, 0), (0, 5), (0, 10)]),
LineString([(0, 0), (0, 1), (0, 2)]),
],
),
],
)
def test_segmentize(geometry, tolerance, expected):
actual = shapely.segmentize(geometry, tolerance)
assert_geometries_equal(actual, expected)
@pytest.mark.skipif(shapely.geos_version < (3, 8, 0), reason="GEOS < 3.8")
@pytest.mark.parametrize("geometry", all_types)
def test_minimum_bounding_circle_all_types(geometry):
actual = shapely.minimum_bounding_circle([geometry, geometry])
assert actual.shape == (2,)
assert actual[0] is None or isinstance(actual[0], Geometry)
actual = shapely.minimum_bounding_circle(None)
assert actual is None
@pytest.mark.skipif(shapely.geos_version < (3, 8, 0), reason="GEOS < 3.8")
@pytest.mark.parametrize(
"geometry, expected",
[
(
Polygon([(0, 5), (5, 10), (10, 5), (5, 0), (0, 5)]),
shapely.buffer(Point(5, 5), 5),
),
(
LineString([(1, 0), (1, 10)]),
shapely.buffer(Point(1, 5), 5),
),
(
MultiPoint([(2, 2), (4, 2)]),
shapely.buffer(Point(3, 2), 1),
),
(
Point(2, 2),
Point(2, 2),
),
(
GeometryCollection(),
Polygon(),
),
],
)
def test_minimum_bounding_circle(geometry, expected):
actual = shapely.minimum_bounding_circle(geometry)
assert_geometries_equal(actual, expected)
@pytest.mark.skipif(shapely.geos_version < (3, 6, 0), reason="GEOS < 3.6")
@pytest.mark.parametrize("geometry", all_types)
def test_oriented_envelope_all_types(geometry):
actual = shapely.oriented_envelope([geometry, geometry])
assert actual.shape == (2,)
assert actual[0] is None or isinstance(actual[0], Geometry)
actual = shapely.oriented_envelope(None)
assert actual is None
@pytest.mark.skipif(shapely.geos_version < (3, 6, 0), reason="GEOS < 3.6")
@pytest.mark.parametrize(
"geometry, expected",
[
(
MultiPoint([(0, 0), (10, 0), (10, 10)]),
Polygon([(0, 0), (5, -5), (15, 5), (10, 10), (0, 0)]),
),
(
LineString([(1, 1), (5, 1), (10, 10)]),
Polygon([(1, 1), (3, -1), (12, 8), (10, 10), (1, 1)]),
),
(
Polygon([(1, 1), (15, 1), (5, 10), (1, 1)]),
Polygon([(15, 1), (15, 10), (1, 10), (1, 1), (15, 1)]),
),
(
LineString([(1, 1), (10, 1)]),
LineString([(1, 1), (10, 1)]),
),
(
Point(2, 2),
Point(2, 2),
),
(
GeometryCollection(),
Polygon(),
),
],
)
def test_oriented_envelope(geometry, expected):
actual = shapely.oriented_envelope(geometry)
assert shapely.equals(actual, expected).all()
@pytest.mark.skipif(shapely.geos_version < (3, 6, 0), reason="GEOS < 3.6")
@pytest.mark.parametrize(
"geometry, expected",
[
(
MultiPoint([(0, 0), (10, 0), (10, 10)]),
Polygon([(0, 0), (5, -5), (15, 5), (10, 10), (0, 0)]),
),
(
LineString([(1, 1), (5, 1), (10, 10)]),
Polygon([(1, 1), (3, -1), (12, 8), (10, 10), (1, 1)]),
),
(
Polygon([(1, 1), (15, 1), (5, 10), (1, 1)]),
Polygon([(15, 1), (15, 10), (1, 10), (1, 1), (15, 1)]),
),
(
LineString([(1, 1), (10, 1)]),
LineString([(1, 1), (10, 1)]),
),
(
Point(2, 2),
Point(2, 2),
),
(
GeometryCollection(),
Polygon(),
),
],
)
def test_minimum_rotated_rectangle(geometry, expected):
actual = shapely.minimum_rotated_rectangle(geometry)
assert shapely.equals(actual, expected).all()
@pytest.mark.skipif(shapely.geos_version < (3, 11, 0), reason="GEOS < 3.11")
def test_concave_hull_kwargs():
p = Point(10, 10)
mp = MultiPoint(p.buffer(5).exterior.coords[:] + p.buffer(4).exterior.coords[:])
result1 = shapely.concave_hull(mp, ratio=0.5)
assert len(result1.interiors) == 0
result2 = shapely.concave_hull(mp, ratio=0.5, allow_holes=True)
assert len(result2.interiors) == 1
result3 = shapely.concave_hull(mp, ratio=0)
result4 = shapely.concave_hull(mp, ratio=1)
assert shapely.get_num_coordinates(result4) < shapely.get_num_coordinates(result3)