Initial commit

This commit is contained in:
2018-09-17 17:16:39 -05:00
parent 9ac35413de
commit 953507a22a
12 changed files with 5185 additions and 0 deletions

View File

@@ -0,0 +1,532 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Project Notebook\n",
"This is the full and complete notebook that takes in the data from NOAA and processes it into frames to be used in the PredNet architecture and produce a resulting prediction."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"import os\n",
"from tqdm import tqdm"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#Getting a list of files in raw data folder\n",
"filenames = os.listdir('D:/Nico/Desktop/processed_data')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"header_wanted = [\n",
" 'HOURLYVISIBILITY',\n",
" 'HOURLYDRYBULBTEMPC',\n",
" 'HOURLYWETBULBTEMPC',\n",
" 'HOURLYDewPointTempC',\n",
" 'HOURLYRelativeHumidity',\n",
" 'HOURLYWindSpeed',\n",
" 'HOURLYWindGustSpeed',\n",
" 'HOURLYStationPressure',\n",
" 'HOURLYPressureTendency',\n",
" 'HOURLYPressureChange',\n",
" 'HOURLYSeaLevelPressure',\n",
" 'HOURLYPrecip',\n",
" 'HOURLYAltimeterSetting']"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"usecols = ['DATE','STATION'] + header_wanted"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#Loading all files into a pandas Dataframe\n",
"tqdm.pandas()\n",
"df = pd.concat([pd.read_csv('D:/Nico/Desktop/processed_data/{}'.format(x), usecols=usecols, low_memory=False) for x in tqdm(filenames)])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"At this point all the data has been loaded into a single dataframe and any data changes have been made. The next step is to break the data up by WBAN and place in a 2D array at the appropriate grid cell. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"stations = pd.read_csv(\"../Playground/stations_unique.csv\", usecols = ['STATION_ID', 'LON_SCALED', 'LAT_SCALED'])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"height = 20\n",
"width = 40"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"mask = [([0] * width) for i in range(height)]\n",
"\n",
"wban_loc = dict(zip(stations.STATION_ID,zip(stations.LON_SCALED,stations.LAT_SCALED)))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"grid = [([pd.DataFrame()] * width) for i in range(height)]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"for key, value in tqdm(wban_loc.items()):\n",
" mask[value[1]][value[0]] = 1\n",
" grid[value[1]][value[0]] = df.loc[df.STATION == key]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n",
"%matplotlib inline"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"plt.imshow(mask)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#TODO Handle different sized data some stacks too short\n",
"def create_frames(data,height, width, depth):\n",
" days = []\n",
" frames = []\n",
" for i in tqdm(range(depth)):\n",
" frame = np.zeros((height,width,12))\n",
" for y in range(height):\n",
" for x in range(width):\n",
" if(not data[y][x].empty):\n",
" frame[y][x] = data[y][x].iloc[[i],1:13].values.flatten()\n",
" if((i+1)%24 != 0):\n",
" frames.append(frame)\n",
" else:\n",
" frames.append(frame)\n",
" days.append(frames)\n",
" frames = []\n",
" return days"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def average_grid_fill(mask,data, height, width):\n",
" \n",
" for i in range(height):\n",
" for j in range(width):\n",
" if(mask[i][j] != 1):\n",
" neighbors = get_neighbors(j,i,data)\n",
" data[i][j] = np.mean(neighbors)\n",
" \n",
" return data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def get_neighbors(x,y,g):\n",
" neighbors = []\n",
" for i in [y-1,y,y+1]:\n",
" for j in [x-1,x,x+1]:\n",
" if(i >= 0 and j >= 0):\n",
" if(i != y or j != x ):\n",
" try:\n",
" neighbors.append(g[i][j])\n",
" except:\n",
" pass\n",
" return neighbors"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def store_sequence(frames):\n",
" import hickle as hkl\n",
" source_list = []\n",
" \n",
" for days in range(len(frames)):\n",
" for day in range(len(frames[days])):\n",
" source_list += '{}'.format(days)\n",
" \n",
" hkl.dump(frames, './data/train/x_train.hkl')\n",
" hkl.dump(source_list, './data/train/x_sources.hkl')\n",
" "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Splits is a dictionary holding train, test, val\n",
"the values for train, test, and val are lists of tuples holding category and folder name\n",
"in the end each image gets a source associated with it\n",
"there is only one data and one source hickle dump for each of train test and val"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"frames = create_frames(grid, height, width,504)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#TODO use loop to average each frame\n",
"for x in tqdm(range(len(frames))):\n",
" for y in range(len(frames[0])):\n",
" frames[x][y] = average_grid_fill(mask, frames[x][y], height, width )"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"store_sequence(frames)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"np_frames = np.array(frames)\n",
"np_frames.shape"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"store_sequence(np_frames)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"At this point I have processed the data and made it into discrete frames of data and it is time to run it through the PredNet architecture for training."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Using TensorFlow backend.\n"
]
}
],
"source": [
"np.random.seed(123)\n",
"from six.moves import cPickle\n",
"\n",
"from keras import backend as K\n",
"from keras.models import Model\n",
"from keras.layers import Input, Dense, Flatten\n",
"from keras.layers import LSTM\n",
"from keras.layers import TimeDistributed\n",
"from keras.callbacks import LearningRateScheduler, ModelCheckpoint\n",
"from keras.optimizers import Adam\n",
"\n",
"from prednet import PredNet\n",
"from data_utils import SequenceGenerator"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"WEIGHTS_DIR = './weights/'\n",
"DATA_DIR = './data/'"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"save_model = True # if weights will be saved\n",
"weights_file = os.path.join(WEIGHTS_DIR, 'prednet_weather_weights.hdf5') # where weights will be saved\n",
"json_file = os.path.join(WEIGHTS_DIR, 'prednet_weather_model.json')"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"# Data files\n",
"#TODO: Use the files from NOAA and process them into proper frames\n",
"train_file = os.path.join(DATA_DIR,'train/', 'x_train.hkl')\n",
"train_sources = os.path.join(DATA_DIR, 'train/', 'x_sources.hkl')\n",
"#val_file = os.path.join(DATA_DIR, 'X_val.hkl')\n",
"#val_sources = os.path.join(DATA_DIR, 'sources_val.hkl')"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"# Training parameters\n",
"nb_epoch = 1\n",
"batch_size = 4\n",
"samples_per_epoch = 500\n",
"N_seq_val = 100 # number of sequences to use for validation"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"# Model parameters\n",
"n_channels, im_height, im_width = (12, 20, 40)\n",
"input_shape = (n_channels, im_height, im_width) if K.image_data_format() == 'channels_first' else (im_height, im_width, n_channels)\n",
"stack_sizes = (n_channels, 48, 96)\n",
"R_stack_sizes = stack_sizes\n",
"A_filt_sizes = (3, 3)\n",
"Ahat_filt_sizes = (3, 3, 3)\n",
"R_filt_sizes = (3, 3, 3)\n",
"layer_loss_weights = np.array([1., 0., 0.]) # weighting for each layer in final loss; \"L_0\" model: [1, 0, 0, 0], \"L_all\": [1, 0.1, 0.1, 0.1]\n",
"layer_loss_weights = np.expand_dims(layer_loss_weights, 1)\n",
"nt = 24 # number of timesteps used for sequences in training\n",
"time_loss_weights = 1./ (nt - 1) * np.ones((nt,1)) # equally weight all timesteps except the first\n",
"time_loss_weights[0] = 0"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"prednet = PredNet(stack_sizes, R_stack_sizes,\n",
" A_filt_sizes, Ahat_filt_sizes, R_filt_sizes,\n",
" output_mode='error', return_sequences=True)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"inputs = Input(shape=(nt,) + input_shape)\n",
"errors = prednet(inputs) # errors will be (batch_size, nt, nb_layers)\n",
"errors_by_time = TimeDistributed(Dense(1, trainable=False), weights=[layer_loss_weights, np.zeros(1)], trainable=False)(errors) # calculate weighted error by layer\n",
"errors_by_time = Flatten()(errors_by_time) # will be (batch_size, nt)\n",
"final_errors = Dense(1, weights=[time_loss_weights, np.zeros(1)], trainable=False)(errors_by_time) # weight errors by time\n",
"model = Model(inputs=inputs, outputs=final_errors)\n",
"model.compile(loss='mean_absolute_error', optimizer='adam')"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"_________________________________________________________________\n",
"Layer (type) Output Shape Param # \n",
"=================================================================\n",
"input_1 (InputLayer) (None, 24, 20, 40, 12) 0 \n",
"_________________________________________________________________\n",
"pred_net_1 (PredNet) (None, 24, 3) 1645548 \n",
"_________________________________________________________________\n",
"time_distributed_1 (TimeDist (None, 24, 1) 4 \n",
"_________________________________________________________________\n",
"flatten_1 (Flatten) (None, 24) 0 \n",
"_________________________________________________________________\n",
"dense_2 (Dense) (None, 1) 25 \n",
"=================================================================\n",
"Total params: 1,645,577\n",
"Trainable params: 1,645,548\n",
"Non-trainable params: 29\n",
"_________________________________________________________________\n"
]
}
],
"source": [
"model.summary()"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"truth = []\n",
"for i in range(20):\n",
" truth.append(np.random.randint(255,size=(1)))\n",
"output = np.array(truth)"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"train_generator = SequenceGenerator(train_file, train_sources, nt, batch_size=batch_size, shuffle=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"lr_schedule = lambda epoch: 0.001 if epoch < 75 else 0.0001 # start with lr of 0.001 and then drop to 0.0001 after 75 epochs\n",
"callbacks = [LearningRateScheduler(lr_schedule)]\n",
"#history = model.fit(np_frames, output ,batch_size, nb_epoch, callbacks=callbacks)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 1/1\n"
]
}
],
"source": [
"history = model.fit_generator(train_generator, samples_per_epoch / batch_size, nb_epoch, callbacks=callbacks)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

532
Project Final/Project.ipynb Normal file
View File

@@ -0,0 +1,532 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Project Notebook\n",
"This is the full and complete notebook that takes in the data from NOAA and processes it into frames to be used in the PredNet architecture and produce a resulting prediction."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"import os\n",
"from tqdm import tqdm"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#Getting a list of files in raw data folder\n",
"filenames = os.listdir('D:/Nico/Desktop/processed_data')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"header_wanted = [\n",
" 'HOURLYVISIBILITY',\n",
" 'HOURLYDRYBULBTEMPC',\n",
" 'HOURLYWETBULBTEMPC',\n",
" 'HOURLYDewPointTempC',\n",
" 'HOURLYRelativeHumidity',\n",
" 'HOURLYWindSpeed',\n",
" 'HOURLYWindGustSpeed',\n",
" 'HOURLYStationPressure',\n",
" 'HOURLYPressureTendency',\n",
" 'HOURLYPressureChange',\n",
" 'HOURLYSeaLevelPressure',\n",
" 'HOURLYPrecip',\n",
" 'HOURLYAltimeterSetting']"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"usecols = ['DATE','STATION'] + header_wanted"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#Loading all files into a pandas Dataframe\n",
"tqdm.pandas()\n",
"df = pd.concat([pd.read_csv('D:/Nico/Desktop/processed_data/{}'.format(x), usecols=usecols, low_memory=False) for x in tqdm(filenames)])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"At this point all the data has been loaded into a single dataframe and any data changes have been made. The next step is to break the data up by WBAN and place in a 2D array at the appropriate grid cell. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"stations = pd.read_csv(\"../Playground/stations_unique.csv\", usecols = ['STATION_ID', 'LON_SCALED', 'LAT_SCALED'])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"height = 20\n",
"width = 40"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"mask = [([0] * width) for i in range(height)]\n",
"\n",
"wban_loc = dict(zip(stations.STATION_ID,zip(stations.LON_SCALED,stations.LAT_SCALED)))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"grid = [([pd.DataFrame()] * width) for i in range(height)]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"for key, value in tqdm(wban_loc.items()):\n",
" mask[value[1]][value[0]] = 1\n",
" grid[value[1]][value[0]] = df.loc[df.STATION == key]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n",
"%matplotlib inline"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"plt.imshow(mask)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#TODO Handle different sized data some stacks too short\n",
"def create_frames(data,height, width, depth):\n",
" days = []\n",
" frames = []\n",
" for i in tqdm(range(depth)):\n",
" frame = np.zeros((height,width,12))\n",
" for y in range(height):\n",
" for x in range(width):\n",
" if(not data[y][x].empty):\n",
" frame[y][x] = data[y][x].iloc[[i],1:13].values.flatten()\n",
" if((i+1)%24 != 0):\n",
" frames.append(frame)\n",
" else:\n",
" frames.append(frame)\n",
" days.append(frames)\n",
" frames = []\n",
" return days"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def average_grid_fill(mask,data, height, width):\n",
" \n",
" for i in range(height):\n",
" for j in range(width):\n",
" if(mask[i][j] != 1):\n",
" neighbors = get_neighbors(j,i,data)\n",
" data[i][j] = np.mean(neighbors)\n",
" \n",
" return data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def get_neighbors(x,y,g):\n",
" neighbors = []\n",
" for i in [y-1,y,y+1]:\n",
" for j in [x-1,x,x+1]:\n",
" if(i >= 0 and j >= 0):\n",
" if(i != y or j != x ):\n",
" try:\n",
" neighbors.append(g[i][j])\n",
" except:\n",
" pass\n",
" return neighbors"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def store_sequence(frames):\n",
" import hickle as hkl\n",
" source_list = []\n",
" \n",
" for days in range(len(frames)):\n",
" for day in range(len(frames[days])):\n",
" source_list += '{}'.format(days)\n",
" \n",
" hkl.dump(frames, './data/train/x_train.hkl')\n",
" hkl.dump(source_list, './data/train/x_sources.hkl')\n",
" "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Splits is a dictionary holding train, test, val\n",
"the values for train, test, and val are lists of tuples holding category and folder name\n",
"in the end each image gets a source associated with it\n",
"there is only one data and one source hickle dump for each of train test and val"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"frames = create_frames(grid, height, width,504)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#TODO use loop to average each frame\n",
"for x in tqdm(range(len(frames))):\n",
" for y in range(len(frames[0])):\n",
" frames[x][y] = average_grid_fill(mask, frames[x][y], height, width )"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"store_sequence(frames)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"np_frames = np.array(frames)\n",
"np_frames.shape"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"store_sequence(np_frames)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"At this point I have processed the data and made it into discrete frames of data and it is time to run it through the PredNet architecture for training."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Using TensorFlow backend.\n"
]
}
],
"source": [
"np.random.seed(123)\n",
"from six.moves import cPickle\n",
"\n",
"from keras import backend as K\n",
"from keras.models import Model\n",
"from keras.layers import Input, Dense, Flatten\n",
"from keras.layers import LSTM\n",
"from keras.layers import TimeDistributed\n",
"from keras.callbacks import LearningRateScheduler, ModelCheckpoint\n",
"from keras.optimizers import Adam\n",
"\n",
"from prednet import PredNet\n",
"from data_utils import SequenceGenerator"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"WEIGHTS_DIR = './weights/'\n",
"DATA_DIR = './data/'"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"save_model = True # if weights will be saved\n",
"weights_file = os.path.join(WEIGHTS_DIR, 'prednet_weather_weights.hdf5') # where weights will be saved\n",
"json_file = os.path.join(WEIGHTS_DIR, 'prednet_weather_model.json')"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"# Data files\n",
"#TODO: Use the files from NOAA and process them into proper frames\n",
"train_file = os.path.join(DATA_DIR,'train/', 'x_train.hkl')\n",
"train_sources = os.path.join(DATA_DIR, 'train/', 'x_sources.hkl')\n",
"#val_file = os.path.join(DATA_DIR, 'X_val.hkl')\n",
"#val_sources = os.path.join(DATA_DIR, 'sources_val.hkl')"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"# Training parameters\n",
"nb_epoch = 1\n",
"batch_size = 4\n",
"samples_per_epoch = 500\n",
"N_seq_val = 100 # number of sequences to use for validation"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"# Model parameters\n",
"n_channels, im_height, im_width = (12, 20, 40)\n",
"input_shape = (n_channels, im_height, im_width) if K.image_data_format() == 'channels_first' else (im_height, im_width, n_channels)\n",
"stack_sizes = (n_channels, 48, 96)\n",
"R_stack_sizes = stack_sizes\n",
"A_filt_sizes = (3, 3)\n",
"Ahat_filt_sizes = (3, 3, 3)\n",
"R_filt_sizes = (3, 3, 3)\n",
"layer_loss_weights = np.array([1., 0., 0.]) # weighting for each layer in final loss; \"L_0\" model: [1, 0, 0, 0], \"L_all\": [1, 0.1, 0.1, 0.1]\n",
"layer_loss_weights = np.expand_dims(layer_loss_weights, 1)\n",
"nt = 24 # number of timesteps used for sequences in training\n",
"time_loss_weights = 1./ (nt - 1) * np.ones((nt,1)) # equally weight all timesteps except the first\n",
"time_loss_weights[0] = 0"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"prednet = PredNet(stack_sizes, R_stack_sizes,\n",
" A_filt_sizes, Ahat_filt_sizes, R_filt_sizes,\n",
" output_mode='error', return_sequences=True)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"inputs = Input(shape=(nt,) + input_shape)\n",
"errors = prednet(inputs) # errors will be (batch_size, nt, nb_layers)\n",
"errors_by_time = TimeDistributed(Dense(1, trainable=False), weights=[layer_loss_weights, np.zeros(1)], trainable=False)(errors) # calculate weighted error by layer\n",
"errors_by_time = Flatten()(errors_by_time) # will be (batch_size, nt)\n",
"final_errors = Dense(1, weights=[time_loss_weights, np.zeros(1)], trainable=False)(errors_by_time) # weight errors by time\n",
"model = Model(inputs=inputs, outputs=final_errors)\n",
"model.compile(loss='mean_absolute_error', optimizer='adam')"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"_________________________________________________________________\n",
"Layer (type) Output Shape Param # \n",
"=================================================================\n",
"input_1 (InputLayer) (None, 24, 20, 40, 12) 0 \n",
"_________________________________________________________________\n",
"pred_net_1 (PredNet) (None, 24, 3) 1645548 \n",
"_________________________________________________________________\n",
"time_distributed_1 (TimeDist (None, 24, 1) 4 \n",
"_________________________________________________________________\n",
"flatten_1 (Flatten) (None, 24) 0 \n",
"_________________________________________________________________\n",
"dense_2 (Dense) (None, 1) 25 \n",
"=================================================================\n",
"Total params: 1,645,577\n",
"Trainable params: 1,645,548\n",
"Non-trainable params: 29\n",
"_________________________________________________________________\n"
]
}
],
"source": [
"model.summary()"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"truth = []\n",
"for i in range(20):\n",
" truth.append(np.random.randint(255,size=(1)))\n",
"output = np.array(truth)"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"train_generator = SequenceGenerator(train_file, train_sources, nt, batch_size=batch_size, shuffle=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"lr_schedule = lambda epoch: 0.001 if epoch < 75 else 0.0001 # start with lr of 0.001 and then drop to 0.0001 after 75 epochs\n",
"callbacks = [LearningRateScheduler(lr_schedule)]\n",
"#history = model.fit(np_frames, output ,batch_size, nb_epoch, callbacks=callbacks)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 1/1\n"
]
}
],
"source": [
"history = model.fit_generator(train_generator, samples_per_epoch / batch_size, nb_epoch, callbacks=callbacks)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@@ -0,0 +1,66 @@
import hickle as hkl
import numpy as np
from keras import backend as K
from keras.preprocessing.image import Iterator
# Data generator that creates sequences for input into PredNet.
class SequenceGenerator(Iterator):
def __init__(self, data_file, source_file, nt,
batch_size=8, shuffle=False, seed=None,
output_mode='error', sequence_start_mode='all', N_seq=None,
data_format=K.image_data_format()):
self.X = hkl.load(data_file) # X will be like (n_images, nb_cols, nb_rows, nb_channels)
self.sources = hkl.load(source_file) # source for each image so when creating sequences can assure that consecutive frames are from same video
self.nt = nt
self.batch_size = batch_size
self.data_format = data_format
assert sequence_start_mode in {'all', 'unique'}, 'sequence_start_mode must be in {all, unique}'
self.sequence_start_mode = sequence_start_mode
assert output_mode in {'error', 'prediction'}, 'output_mode must be in {error, prediction}'
self.output_mode = output_mode
if self.data_format == 'channels_first':
self.X = np.transpose(self.X, (0, 3, 1, 2))
self.im_shape = self.X[0].shape
if self.sequence_start_mode == 'all': # allow for any possible sequence, starting from any frame
self.possible_starts = np.array([i for i in range(self.X.shape[0] - self.nt) if self.sources[i] == self.sources[i + self.nt - 1]])
elif self.sequence_start_mode == 'unique': #create sequences where each unique frame is in at most one sequence
curr_location = 0
possible_starts = []
while curr_location < self.X.shape[0] - self.nt + 1:
if self.sources[curr_location] == self.sources[curr_location + self.nt - 1]:
possible_starts.append(curr_location)
curr_location += self.nt
else:
curr_location += 1
self.possible_starts = possible_starts
if shuffle:
self.possible_starts = np.random.permutation(self.possible_starts)
if N_seq is not None and len(self.possible_starts) > N_seq: # select a subset of sequences if want to
self.possible_starts = self.possible_starts[:N_seq]
self.N_sequences = len(self.possible_starts)
super(SequenceGenerator, self).__init__(len(self.possible_starts), batch_size, shuffle, seed)
def next(self):
with self.lock:
index_array, current_index, current_batch_size = next(self.index_generator)
batch_x = np.zeros((current_batch_size, self.nt) + self.im_shape, np.float32)
for i, idx in enumerate(index_array):
idx = self.possible_starts[idx]
batch_x[i] = self.preprocess(self.X[idx:idx+self.nt])
if self.output_mode == 'error': # model outputs errors, so y should be zeros
batch_y = np.zeros(current_batch_size, np.float32)
elif self.output_mode == 'prediction': # output actual pixels
batch_y = batch_x
return batch_x, batch_y
def preprocess(self, X):
return X.astype(np.float32) / 255
def create_all(self):
X_all = np.zeros((self.N_sequences, self.nt) + self.im_shape, np.float32)
for i, idx in enumerate(self.possible_starts):
X_all[i] = self.preprocess(self.X[idx:idx+self.nt])
return X_all

View File

@@ -0,0 +1,58 @@
import os
import numpy as np
from keras import backend as K
from keras.legacy.interfaces import generate_legacy_interface, recurrent_args_preprocessor
from keras.models import model_from_json
legacy_prednet_support = generate_legacy_interface(
allowed_positional_args=['stack_sizes', 'R_stack_sizes',
'A_filt_sizes', 'Ahat_filt_sizes', 'R_filt_sizes'],
conversions=[('dim_ordering', 'data_format'),
('consume_less', 'implementation')],
value_conversions={'dim_ordering': {'tf': 'channels_last',
'th': 'channels_first',
'default': None},
'consume_less': {'cpu': 0,
'mem': 1,
'gpu': 2}},
preprocessor=recurrent_args_preprocessor)
# Convert old Keras (1.2) json models and weights to Keras 2.0
def convert_model_to_keras2(old_json_file, old_weights_file, new_json_file, new_weights_file):
from prednet import PredNet
# If using tensorflow, it doesn't allow you to load the old weights.
if K.backend() != 'theano':
os.environ['KERAS_BACKEND'] = backend
reload(K)
f = open(old_json_file, 'r')
json_string = f.read()
f.close()
model = model_from_json(json_string, custom_objects = {'PredNet': PredNet})
model.load_weights(old_weights_file)
weights = model.layers[1].get_weights()
if weights[0].shape[0] == model.layers[1].stack_sizes[1]:
for i, w in enumerate(weights):
if w.ndim == 4:
weights[i] = np.transpose(w, (2, 3, 1, 0))
model.set_weights(weights)
model.save_weights(new_weights_file)
json_string = model.to_json()
with open(new_json_file, "w") as f:
f.write(json_string)
if __name__ == '__main__':
old_dir = './model_data/'
new_dir = './model_data_keras2/'
if not os.path.exists(new_dir):
os.mkdir(new_dir)
for w_tag in ['', '-Lall', '-extrapfinetuned']:
m_tag = '' if w_tag == '-Lall' else w_tag
convert_model_to_keras2(old_dir + 'prednet_kitti_model' + m_tag + '.json',
old_dir + 'prednet_kitti_weights' + w_tag + '.hdf5',
new_dir + 'prednet_kitti_model' + m_tag + '.json',
new_dir + 'prednet_kitti_weights' + w_tag + '.hdf5')

311
Project Final/prednet.py Normal file
View File

@@ -0,0 +1,311 @@
import numpy as np
from keras import backend as K
from keras import activations
from keras.layers import Recurrent
from keras.layers import Conv2D, UpSampling2D, MaxPooling2D
from keras.engine import InputSpec
from keras_utils import legacy_prednet_support
class PredNet(Recurrent):
'''PredNet architecture - Lotter 2016.
Stacked convolutional LSTM inspired by predictive coding principles.
# Arguments
stack_sizes: number of channels in targets (A) and predictions (Ahat) in each layer of the architecture.
Length is the number of layers in the architecture.
First element is the number of channels in the input.
Ex. (3, 16, 32) would correspond to a 3 layer architecture that takes in RGB images and has 16 and 32
channels in the second and third layers, respectively.
R_stack_sizes: number of channels in the representation (R) modules.
Length must equal length of stack_sizes, but the number of channels per layer can be different.
A_filt_sizes: filter sizes for the target (A) modules.
Has length of 1 - len(stack_sizes).
Ex. (3, 3) would mean that targets for layers 2 and 3 are computed by a 3x3 convolution of the errors (E)
from the layer below (followed by max-pooling)
Ahat_filt_sizes: filter sizes for the prediction (Ahat) modules.
Has length equal to length of stack_sizes.
Ex. (3, 3, 3) would mean that the predictions for each layer are computed by a 3x3 convolution of the
representation (R) modules at each layer.
R_filt_sizes: filter sizes for the representation (R) modules.
Has length equal to length of stack_sizes.
Corresponds to the filter sizes for all convolutions in the LSTM.
pixel_max: the maximum pixel value.
Used to clip the pixel-layer prediction.
error_activation: activation function for the error (E) units.
A_activation: activation function for the target (A) and prediction (A_hat) units.
LSTM_activation: activation function for the cell and hidden states of the LSTM.
LSTM_inner_activation: activation function for the gates in the LSTM.
output_mode: either 'error', 'prediction', 'all' or layer specification (ex. R2, see below).
Controls what is outputted by the PredNet.
If 'error', the mean response of the error (E) units of each layer will be outputted.
That is, the output shape will be (batch_size, nb_layers).
If 'prediction', the frame prediction will be outputted.
If 'all', the output will be the frame prediction concatenated with the mean layer errors.
The frame prediction is flattened before concatenation.
Nomenclature of 'all' is kept for backwards compatibility, but should not be confused with returning all of the layers of the model
For returning the features of a particular layer, output_mode should be of the form unit_type + layer_number.
For instance, to return the features of the LSTM "representational" units in the lowest layer, output_mode should be specificied as 'R0'.
The possible unit types are 'R', 'Ahat', 'A', and 'E' corresponding to the 'representation', 'prediction', 'target', and 'error' units respectively.
extrap_start_time: time step for which model will start extrapolating.
Starting at this time step, the prediction from the previous time step will be treated as the "actual"
data_format: 'channels_first' or 'channels_last'.
It defaults to the `image_data_format` value found in your
Keras config file at `~/.keras/keras.json`.
# References
- [Deep predictive coding networks for video prediction and unsupervised learning](https://arxiv.org/abs/1605.08104)
- [Long short-term memory](http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf)
- [Convolutional LSTM network: a machine learning approach for precipitation nowcasting](http://arxiv.org/abs/1506.04214)
- [Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects](http://www.nature.com/neuro/journal/v2/n1/pdf/nn0199_79.pdf)
'''
@legacy_prednet_support
def __init__(self, stack_sizes, R_stack_sizes,
A_filt_sizes, Ahat_filt_sizes, R_filt_sizes,
pixel_max=1., error_activation='relu', A_activation='relu',
LSTM_activation='tanh', LSTM_inner_activation='hard_sigmoid',
output_mode='error', extrap_start_time=None,
data_format=K.image_data_format(), **kwargs):
self.stack_sizes = stack_sizes
self.nb_layers = len(stack_sizes)
assert len(R_stack_sizes) == self.nb_layers, 'len(R_stack_sizes) must equal len(stack_sizes)'
self.R_stack_sizes = R_stack_sizes
assert len(A_filt_sizes) == (self.nb_layers - 1), 'len(A_filt_sizes) must equal len(stack_sizes) - 1'
self.A_filt_sizes = A_filt_sizes
assert len(Ahat_filt_sizes) == self.nb_layers, 'len(Ahat_filt_sizes) must equal len(stack_sizes)'
self.Ahat_filt_sizes = Ahat_filt_sizes
assert len(R_filt_sizes) == (self.nb_layers), 'len(R_filt_sizes) must equal len(stack_sizes)'
self.R_filt_sizes = R_filt_sizes
self.pixel_max = pixel_max
self.error_activation = activations.get(error_activation)
self.A_activation = activations.get(A_activation)
self.LSTM_activation = activations.get(LSTM_activation)
self.LSTM_inner_activation = activations.get(LSTM_inner_activation)
default_output_modes = ['prediction', 'error', 'all']
layer_output_modes = [layer + str(n) for n in range(self.nb_layers) for layer in ['R', 'E', 'A', 'Ahat']]
assert output_mode in default_output_modes + layer_output_modes, 'Invalid output_mode: ' + str(output_mode)
self.output_mode = output_mode
if self.output_mode in layer_output_modes:
self.output_layer_type = self.output_mode[:-1]
self.output_layer_num = int(self.output_mode[-1])
else:
self.output_layer_type = None
self.output_layer_num = None
self.extrap_start_time = extrap_start_time
assert data_format in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}'
self.data_format = data_format
self.channel_axis = -3 if data_format == 'channels_first' else -1
self.row_axis = -2 if data_format == 'channels_first' else -3
self.column_axis = -1 if data_format == 'channels_first' else -2
super(PredNet, self).__init__(**kwargs)
self.input_spec = [InputSpec(ndim=5)]
def compute_output_shape(self, input_shape):
if self.output_mode == 'prediction':
out_shape = input_shape[2:]
elif self.output_mode == 'error':
out_shape = (self.nb_layers,)
elif self.output_mode == 'all':
out_shape = (np.prod(input_shape[2:]) + self.nb_layers,)
else:
stack_str = 'R_stack_sizes' if self.output_layer_type == 'R' else 'stack_sizes'
stack_mult = 2 if self.output_layer_type == 'E' else 1
out_stack_size = stack_mult * getattr(self, stack_str)[self.output_layer_num]
out_nb_row = input_shape[self.row_axis] / 2**self.output_layer_num
out_nb_col = input_shape[self.column_axis] / 2**self.output_layer_num
if self.data_format == 'channels_first':
out_shape = (out_stack_size, out_nb_row, out_nb_col)
else:
out_shape = (out_nb_row, out_nb_col, out_stack_size)
if self.return_sequences:
return (input_shape[0], input_shape[1]) + out_shape
else:
return (input_shape[0],) + out_shape
def get_initial_state(self, x):
input_shape = self.input_spec[0].shape
init_nb_row = input_shape[self.row_axis]
init_nb_col = input_shape[self.column_axis]
base_initial_state = K.zeros_like(x) # (samples, timesteps) + image_shape
non_channel_axis = -1 if self.data_format == 'channels_first' else -2
for _ in range(2):
base_initial_state = K.sum(base_initial_state, axis=non_channel_axis)
base_initial_state = K.sum(base_initial_state, axis=1) # (samples, nb_channels)
initial_states = []
states_to_pass = ['r', 'c', 'e']
nlayers_to_pass = {u: self.nb_layers for u in states_to_pass}
if self.extrap_start_time is not None:
states_to_pass.append('ahat') # pass prediction in states so can use as actual for t+1 when extrapolating
nlayers_to_pass['ahat'] = 1
for u in states_to_pass:
for l in range(nlayers_to_pass[u]):
ds_factor = 2 ** l
nb_row = init_nb_row // ds_factor
nb_col = init_nb_col // ds_factor
if u in ['r', 'c']:
stack_size = self.R_stack_sizes[l]
elif u == 'e':
stack_size = 2 * self.stack_sizes[l]
elif u == 'ahat':
stack_size = self.stack_sizes[l]
output_size = stack_size * nb_row * nb_col # flattened size
reducer = K.zeros((input_shape[self.channel_axis], output_size)) # (nb_channels, output_size)
initial_state = K.dot(base_initial_state, reducer) # (samples, output_size)
if self.data_format == 'channels_first':
output_shp = (-1, stack_size, nb_row, nb_col)
else:
output_shp = (-1, nb_row, nb_col, stack_size)
initial_state = K.reshape(initial_state, output_shp)
initial_states += [initial_state]
if K._BACKEND == 'theano':
from theano import tensor as T
# There is a known issue in the Theano scan op when dealing with inputs whose shape is 1 along a dimension.
# In our case, this is a problem when training on grayscale images, and the below line fixes it.
initial_states = [T.unbroadcast(init_state, 0, 1) for init_state in initial_states]
if self.extrap_start_time is not None:
initial_states += [K.variable(0, int if K.backend() != 'tensorflow' else 'int32')] # the last state will correspond to the current timestep
return initial_states
def build(self, input_shape):
self.input_spec = [InputSpec(shape=input_shape)]
self.conv_layers = {c: [] for c in ['i', 'f', 'c', 'o', 'a', 'ahat']}
for l in range(self.nb_layers):
for c in ['i', 'f', 'c', 'o']:
act = self.LSTM_activation if c == 'c' else self.LSTM_inner_activation
self.conv_layers[c].append(Conv2D(self.R_stack_sizes[l], self.R_filt_sizes[l], padding='same', activation=act, data_format=self.data_format))
act = 'relu' if l == 0 else self.A_activation
self.conv_layers['ahat'].append(Conv2D(self.stack_sizes[l], self.Ahat_filt_sizes[l], padding='same', activation=act, data_format=self.data_format))
if l < self.nb_layers - 1:
self.conv_layers['a'].append(Conv2D(self.stack_sizes[l+1], self.A_filt_sizes[l], padding='same', activation=self.A_activation, data_format=self.data_format))
self.upsample = UpSampling2D(data_format=self.data_format)
self.pool = MaxPooling2D(data_format=self.data_format)
self.trainable_weights = []
nb_row, nb_col = (input_shape[-2], input_shape[-1]) if self.data_format == 'channels_first' else (input_shape[-3], input_shape[-2])
for c in sorted(self.conv_layers.keys()):
for l in range(len(self.conv_layers[c])):
ds_factor = 2 ** l
if c == 'ahat':
nb_channels = self.R_stack_sizes[l]
elif c == 'a':
nb_channels = 2 * self.R_stack_sizes[l]
else:
nb_channels = self.stack_sizes[l] * 2 + self.R_stack_sizes[l]
if l < self.nb_layers - 1:
nb_channels += self.R_stack_sizes[l+1]
in_shape = (input_shape[0], nb_channels, nb_row // ds_factor, nb_col // ds_factor)
if self.data_format == 'channels_last': in_shape = (in_shape[0], in_shape[2], in_shape[3], in_shape[1])
with K.name_scope('layer_' + c + '_' + str(l)):
self.conv_layers[c][l].build(in_shape)
self.trainable_weights += self.conv_layers[c][l].trainable_weights
self.states = [None] * self.nb_layers*3
if self.extrap_start_time is not None:
self.t_extrap = K.variable(self.extrap_start_time, int if K.backend() != 'tensorflow' else 'int32')
self.states += [None] * 2 # [previous frame prediction, timestep]
def step(self, a, states):
r_tm1 = states[:self.nb_layers]
c_tm1 = states[self.nb_layers:2*self.nb_layers]
e_tm1 = states[2*self.nb_layers:3*self.nb_layers]
if self.extrap_start_time is not None:
t = states[-1]
a = K.switch(t >= self.t_extrap, states[-2], a) # if past self.extrap_start_time, the previous prediction will be treated as the actual
c = []
r = []
e = []
# Update R units starting from the top
for l in reversed(range(self.nb_layers)):
inputs = [r_tm1[l], e_tm1[l]]
if l < self.nb_layers - 1:
inputs.append(r_up)
inputs = K.concatenate(inputs, axis=self.channel_axis)
i = self.conv_layers['i'][l].call(inputs)
f = self.conv_layers['f'][l].call(inputs)
o = self.conv_layers['o'][l].call(inputs)
_c = f * c_tm1[l] + i * self.conv_layers['c'][l].call(inputs)
_r = o * self.LSTM_activation(_c)
c.insert(0, _c)
r.insert(0, _r)
if l > 0:
r_up = self.upsample.call(_r)
# Update feedforward path starting from the bottom
for l in range(self.nb_layers):
ahat = self.conv_layers['ahat'][l].call(r[l])
if l == 0:
ahat = K.minimum(ahat, self.pixel_max)
frame_prediction = ahat
# compute errors
e_up = self.error_activation(ahat - a)
e_down = self.error_activation(a - ahat)
e.append(K.concatenate((e_up, e_down), axis=self.channel_axis))
if self.output_layer_num == l:
if self.output_layer_type == 'A':
output = a
elif self.output_layer_type == 'Ahat':
output = ahat
elif self.output_layer_type == 'R':
output = r[l]
elif self.output_layer_type == 'E':
output = e[l]
if l < self.nb_layers - 1:
a = self.conv_layers['a'][l].call(e[l])
a = self.pool.call(a) # target for next layer
if self.output_layer_type is None:
if self.output_mode == 'prediction':
output = frame_prediction
else:
for l in range(self.nb_layers):
layer_error = K.mean(K.batch_flatten(e[l]), axis=-1, keepdims=True)
all_error = layer_error if l == 0 else K.concatenate((all_error, layer_error), axis=-1)
if self.output_mode == 'error':
output = all_error
else:
output = K.concatenate((K.batch_flatten(frame_prediction), all_error), axis=-1)
states = r + c + e
if self.extrap_start_time is not None:
states += [frame_prediction, t + 1]
return output, states
def get_config(self):
config = {'stack_sizes': self.stack_sizes,
'R_stack_sizes': self.R_stack_sizes,
'A_filt_sizes': self.A_filt_sizes,
'Ahat_filt_sizes': self.Ahat_filt_sizes,
'R_filt_sizes': self.R_filt_sizes,
'pixel_max': self.pixel_max,
'error_activation': self.error_activation.__name__,
'A_activation': self.A_activation.__name__,
'LSTM_activation': self.LSTM_activation.__name__,
'LSTM_inner_activation': self.LSTM_inner_activation.__name__,
'data_format': self.data_format,
'extrap_start_time': self.extrap_start_time,
'output_mode': self.output_mode}
base_config = super(PredNet, self).get_config()
return dict(list(base_config.items()) + list(config.items()))

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff