mirror of
https://github.com/GoldenCheetah/GoldenCheetah.git
synced 2026-02-13 16:18:42 +00:00
.. allows constrained fits .. this is a GPL lib that is included into the source tree to avoid adding another painful deendency. .. for details of the lib please see: http://users.ics.forth.gr/~lourakis/levmar/
827 lines
24 KiB
C
827 lines
24 KiB
C
/////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Levenberg - Marquardt non-linear minimization algorithm
|
|
// Copyright (C) 2004-05 Manolis Lourakis (lourakis at ics forth gr)
|
|
// Institute of Computer Science, Foundation for Research & Technology - Hellas
|
|
// Heraklion, Crete, Greece.
|
|
//
|
|
// This program is free software; you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation; either version 2 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// This program is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
//
|
|
/////////////////////////////////////////////////////////////////////////////////
|
|
|
|
#ifndef LM_REAL // not included by misc.c
|
|
#error This file should not be compiled directly!
|
|
#endif
|
|
|
|
|
|
/* precision-specific definitions */
|
|
#define LEVMAR_CHKJAC LM_ADD_PREFIX(levmar_chkjac)
|
|
#define LEVMAR_FDIF_FORW_JAC_APPROX LM_ADD_PREFIX(levmar_fdif_forw_jac_approx)
|
|
#define LEVMAR_FDIF_CENT_JAC_APPROX LM_ADD_PREFIX(levmar_fdif_cent_jac_approx)
|
|
#define LEVMAR_TRANS_MAT_MAT_MULT LM_ADD_PREFIX(levmar_trans_mat_mat_mult)
|
|
#define LEVMAR_COVAR LM_ADD_PREFIX(levmar_covar)
|
|
#define LEVMAR_STDDEV LM_ADD_PREFIX(levmar_stddev)
|
|
#define LEVMAR_CORCOEF LM_ADD_PREFIX(levmar_corcoef)
|
|
#define LEVMAR_R2 LM_ADD_PREFIX(levmar_R2)
|
|
#define LEVMAR_BOX_CHECK LM_ADD_PREFIX(levmar_box_check)
|
|
#define LEVMAR_L2NRMXMY LM_ADD_PREFIX(levmar_L2nrmxmy)
|
|
|
|
#ifdef HAVE_LAPACK
|
|
#define LEVMAR_PSEUDOINVERSE LM_ADD_PREFIX(levmar_pseudoinverse)
|
|
static int LEVMAR_PSEUDOINVERSE(LM_REAL *A, LM_REAL *B, int m);
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
/* BLAS matrix multiplication, LAPACK SVD & Cholesky routines */
|
|
#define GEMM LM_MK_BLAS_NAME(gemm)
|
|
/* C := alpha*op( A )*op( B ) + beta*C */
|
|
extern void GEMM(char *transa, char *transb, int *m, int *n, int *k,
|
|
LM_REAL *alpha, LM_REAL *a, int *lda, LM_REAL *b, int *ldb, LM_REAL *beta, LM_REAL *c, int *ldc);
|
|
|
|
#define GESVD LM_MK_LAPACK_NAME(gesvd)
|
|
#define GESDD LM_MK_LAPACK_NAME(gesdd)
|
|
extern int GESVD(char *jobu, char *jobvt, int *m, int *n, LM_REAL *a, int *lda, LM_REAL *s, LM_REAL *u, int *ldu,
|
|
LM_REAL *vt, int *ldvt, LM_REAL *work, int *lwork, int *info);
|
|
|
|
/* lapack 3.0 new SVD routine, faster than xgesvd() */
|
|
extern int GESDD(char *jobz, int *m, int *n, LM_REAL *a, int *lda, LM_REAL *s, LM_REAL *u, int *ldu, LM_REAL *vt, int *ldvt,
|
|
LM_REAL *work, int *lwork, int *iwork, int *info);
|
|
|
|
/* Cholesky decomposition */
|
|
#define POTF2 LM_MK_LAPACK_NAME(potf2)
|
|
extern int POTF2(char *uplo, int *n, LM_REAL *a, int *lda, int *info);
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|
|
|
|
#define LEVMAR_CHOLESKY LM_ADD_PREFIX(levmar_chol)
|
|
|
|
#else /* !HAVE_LAPACK */
|
|
#define LEVMAR_LUINVERSE LM_ADD_PREFIX(levmar_LUinverse_noLapack)
|
|
|
|
static int LEVMAR_LUINVERSE(LM_REAL *A, LM_REAL *B, int m);
|
|
#endif /* HAVE_LAPACK */
|
|
|
|
/* blocked multiplication of the transpose of the nxm matrix a with itself (i.e. a^T a)
|
|
* using a block size of bsize. The product is returned in b.
|
|
* Since a^T a is symmetric, its computation can be sped up by computing only its
|
|
* upper triangular part and copying it to the lower part.
|
|
*
|
|
* More details on blocking can be found at
|
|
* http://www-2.cs.cmu.edu/afs/cs/academic/class/15213-f02/www/R07/section_a/Recitation07-SectionA.pdf
|
|
*/
|
|
void LEVMAR_TRANS_MAT_MAT_MULT(LM_REAL *a, LM_REAL *b, int n, int m)
|
|
{
|
|
#ifdef HAVE_LAPACK /* use BLAS matrix multiply */
|
|
|
|
LM_REAL alpha=LM_CNST(1.0), beta=LM_CNST(0.0);
|
|
/* Fool BLAS to compute a^T*a avoiding transposing a: a is equivalent to a^T in column major,
|
|
* therefore BLAS computes a*a^T with a and a*a^T in column major, which is equivalent to
|
|
* computing a^T*a in row major!
|
|
*/
|
|
GEMM("N", "T", &m, &m, &n, &alpha, a, &m, a, &m, &beta, b, &m);
|
|
|
|
#else /* no LAPACK, use blocking-based multiply */
|
|
|
|
register int i, j, k, jj, kk;
|
|
register LM_REAL sum, *bim, *akm;
|
|
const int bsize=__BLOCKSZ__;
|
|
|
|
#define __MIN__(x, y) (((x)<=(y))? (x) : (y))
|
|
#define __MAX__(x, y) (((x)>=(y))? (x) : (y))
|
|
|
|
/* compute upper triangular part using blocking */
|
|
for(jj=0; jj<m; jj+=bsize){
|
|
for(i=0; i<m; ++i){
|
|
bim=b+i*m;
|
|
for(j=__MAX__(jj, i); j<__MIN__(jj+bsize, m); ++j)
|
|
bim[j]=0.0; //b[i*m+j]=0.0;
|
|
}
|
|
|
|
for(kk=0; kk<n; kk+=bsize){
|
|
for(i=0; i<m; ++i){
|
|
bim=b+i*m;
|
|
for(j=__MAX__(jj, i); j<__MIN__(jj+bsize, m); ++j){
|
|
sum=0.0;
|
|
for(k=kk; k<__MIN__(kk+bsize, n); ++k){
|
|
akm=a+k*m;
|
|
sum+=akm[i]*akm[j]; //a[k*m+i]*a[k*m+j];
|
|
}
|
|
bim[j]+=sum; //b[i*m+j]+=sum;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* copy upper triangular part to the lower one */
|
|
for(i=0; i<m; ++i)
|
|
for(j=0; j<i; ++j)
|
|
b[i*m+j]=b[j*m+i];
|
|
|
|
#undef __MIN__
|
|
#undef __MAX__
|
|
|
|
#endif /* HAVE_LAPACK */
|
|
}
|
|
|
|
/* forward finite difference approximation to the Jacobian of func */
|
|
void LEVMAR_FDIF_FORW_JAC_APPROX(
|
|
void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata),
|
|
/* function to differentiate */
|
|
LM_REAL *p, /* I: current parameter estimate, mx1 */
|
|
LM_REAL *hx, /* I: func evaluated at p, i.e. hx=func(p), nx1 */
|
|
LM_REAL *hxx, /* W/O: work array for evaluating func(p+delta), nx1 */
|
|
LM_REAL delta, /* increment for computing the Jacobian */
|
|
LM_REAL *jac, /* O: array for storing approximated Jacobian, nxm */
|
|
int m,
|
|
int n,
|
|
void *adata)
|
|
{
|
|
register int i, j;
|
|
LM_REAL tmp;
|
|
register LM_REAL d;
|
|
|
|
for(j=0; j<m; ++j){
|
|
/* determine d=max(1E-04*|p[j]|, delta), see HZ */
|
|
d=LM_CNST(1E-04)*p[j]; // force evaluation
|
|
d=FABS(d);
|
|
if(d<delta)
|
|
d=delta;
|
|
|
|
tmp=p[j];
|
|
p[j]+=d;
|
|
|
|
(*func)(p, hxx, m, n, adata);
|
|
|
|
p[j]=tmp; /* restore */
|
|
|
|
d=LM_CNST(1.0)/d; /* invert so that divisions can be carried out faster as multiplications */
|
|
for(i=0; i<n; ++i){
|
|
jac[i*m+j]=(hxx[i]-hx[i])*d;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* central finite difference approximation to the Jacobian of func */
|
|
void LEVMAR_FDIF_CENT_JAC_APPROX(
|
|
void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata),
|
|
/* function to differentiate */
|
|
LM_REAL *p, /* I: current parameter estimate, mx1 */
|
|
LM_REAL *hxm, /* W/O: work array for evaluating func(p-delta), nx1 */
|
|
LM_REAL *hxp, /* W/O: work array for evaluating func(p+delta), nx1 */
|
|
LM_REAL delta, /* increment for computing the Jacobian */
|
|
LM_REAL *jac, /* O: array for storing approximated Jacobian, nxm */
|
|
int m,
|
|
int n,
|
|
void *adata)
|
|
{
|
|
register int i, j;
|
|
LM_REAL tmp;
|
|
register LM_REAL d;
|
|
|
|
for(j=0; j<m; ++j){
|
|
/* determine d=max(1E-04*|p[j]|, delta), see HZ */
|
|
d=LM_CNST(1E-04)*p[j]; // force evaluation
|
|
d=FABS(d);
|
|
if(d<delta)
|
|
d=delta;
|
|
|
|
tmp=p[j];
|
|
p[j]-=d;
|
|
(*func)(p, hxm, m, n, adata);
|
|
|
|
p[j]=tmp+d;
|
|
(*func)(p, hxp, m, n, adata);
|
|
p[j]=tmp; /* restore */
|
|
|
|
d=LM_CNST(0.5)/d; /* invert so that divisions can be carried out faster as multiplications */
|
|
for(i=0; i<n; ++i){
|
|
jac[i*m+j]=(hxp[i]-hxm[i])*d;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check the Jacobian of a n-valued nonlinear function in m variables
|
|
* evaluated at a point p, for consistency with the function itself.
|
|
*
|
|
* Based on fortran77 subroutine CHKDER by
|
|
* Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More
|
|
* Argonne National Laboratory. MINPACK project. March 1980.
|
|
*
|
|
*
|
|
* func points to a function from R^m --> R^n: Given a p in R^m it yields hx in R^n
|
|
* jacf points to a function implementing the Jacobian of func, whose correctness
|
|
* is to be tested. Given a p in R^m, jacf computes into the nxm matrix j the
|
|
* Jacobian of func at p. Note that row i of j corresponds to the gradient of
|
|
* the i-th component of func, evaluated at p.
|
|
* p is an input array of length m containing the point of evaluation.
|
|
* m is the number of variables
|
|
* n is the number of functions
|
|
* adata points to possible additional data and is passed uninterpreted
|
|
* to func, jacf.
|
|
* err is an array of length n. On output, err contains measures
|
|
* of correctness of the respective gradients. if there is
|
|
* no severe loss of significance, then if err[i] is 1.0 the
|
|
* i-th gradient is correct, while if err[i] is 0.0 the i-th
|
|
* gradient is incorrect. For values of err between 0.0 and 1.0,
|
|
* the categorization is less certain. In general, a value of
|
|
* err[i] greater than 0.5 indicates that the i-th gradient is
|
|
* probably correct, while a value of err[i] less than 0.5
|
|
* indicates that the i-th gradient is probably incorrect.
|
|
*
|
|
*
|
|
* The function does not perform reliably if cancellation or
|
|
* rounding errors cause a severe loss of significance in the
|
|
* evaluation of a function. therefore, none of the components
|
|
* of p should be unusually small (in particular, zero) or any
|
|
* other value which may cause loss of significance.
|
|
*/
|
|
|
|
void LEVMAR_CHKJAC(
|
|
void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata),
|
|
void (*jacf)(LM_REAL *p, LM_REAL *j, int m, int n, void *adata),
|
|
LM_REAL *p, int m, int n, void *adata, LM_REAL *err)
|
|
{
|
|
LM_REAL factor=LM_CNST(100.0);
|
|
LM_REAL one=LM_CNST(1.0);
|
|
LM_REAL zero=LM_CNST(0.0);
|
|
LM_REAL *fvec, *fjac, *pp, *fvecp, *buf;
|
|
|
|
register int i, j;
|
|
LM_REAL eps, epsf, temp, epsmch;
|
|
LM_REAL epslog;
|
|
int fvec_sz=n, fjac_sz=n*m, pp_sz=m, fvecp_sz=n;
|
|
|
|
epsmch=LM_REAL_EPSILON;
|
|
eps=(LM_REAL)sqrt(epsmch);
|
|
|
|
buf=(LM_REAL *)malloc((fvec_sz + fjac_sz + pp_sz + fvecp_sz)*sizeof(LM_REAL));
|
|
if(!buf){
|
|
fprintf(stderr, LCAT(LEVMAR_CHKJAC, "(): memory allocation request failed\n"));
|
|
exit(1);
|
|
}
|
|
fvec=buf;
|
|
fjac=fvec+fvec_sz;
|
|
pp=fjac+fjac_sz;
|
|
fvecp=pp+pp_sz;
|
|
|
|
/* compute fvec=func(p) */
|
|
(*func)(p, fvec, m, n, adata);
|
|
|
|
/* compute the Jacobian at p */
|
|
(*jacf)(p, fjac, m, n, adata);
|
|
|
|
/* compute pp */
|
|
for(j=0; j<m; ++j){
|
|
temp=eps*FABS(p[j]);
|
|
if(temp==zero) temp=eps;
|
|
pp[j]=p[j]+temp;
|
|
}
|
|
|
|
/* compute fvecp=func(pp) */
|
|
(*func)(pp, fvecp, m, n, adata);
|
|
|
|
epsf=factor*epsmch;
|
|
epslog=(LM_REAL)log10(eps);
|
|
|
|
for(i=0; i<n; ++i)
|
|
err[i]=zero;
|
|
|
|
for(j=0; j<m; ++j){
|
|
temp=FABS(p[j]);
|
|
if(temp==zero) temp=one;
|
|
|
|
for(i=0; i<n; ++i)
|
|
err[i]+=temp*fjac[i*m+j];
|
|
}
|
|
|
|
for(i=0; i<n; ++i){
|
|
temp=one;
|
|
if(fvec[i]!=zero && fvecp[i]!=zero && FABS(fvecp[i]-fvec[i])>=epsf*FABS(fvec[i]))
|
|
temp=eps*FABS((fvecp[i]-fvec[i])/eps - err[i])/(FABS(fvec[i])+FABS(fvecp[i]));
|
|
err[i]=one;
|
|
if(temp>epsmch && temp<eps)
|
|
err[i]=((LM_REAL)log10(temp) - epslog)/epslog;
|
|
if(temp>=eps) err[i]=zero;
|
|
}
|
|
|
|
free(buf);
|
|
|
|
return;
|
|
}
|
|
|
|
#ifdef HAVE_LAPACK
|
|
/*
|
|
* This function computes the pseudoinverse of a square matrix A
|
|
* into B using SVD. A and B can coincide
|
|
*
|
|
* The function returns 0 in case of error (e.g. A is singular),
|
|
* the rank of A if successful
|
|
*
|
|
* A, B are mxm
|
|
*
|
|
*/
|
|
static int LEVMAR_PSEUDOINVERSE(LM_REAL *A, LM_REAL *B, int m)
|
|
{
|
|
LM_REAL *buf=NULL;
|
|
int buf_sz=0;
|
|
static LM_REAL eps=LM_CNST(-1.0);
|
|
|
|
register int i, j;
|
|
LM_REAL *a, *u, *s, *vt, *work;
|
|
int a_sz, u_sz, s_sz, vt_sz, tot_sz;
|
|
LM_REAL thresh, one_over_denom;
|
|
int info, rank, worksz, *iwork, iworksz;
|
|
|
|
/* calculate required memory size */
|
|
worksz=5*m; // min worksize for GESVD
|
|
//worksz=m*(7*m+4); // min worksize for GESDD
|
|
iworksz=8*m;
|
|
a_sz=m*m;
|
|
u_sz=m*m; s_sz=m; vt_sz=m*m;
|
|
|
|
tot_sz=(a_sz + u_sz + s_sz + vt_sz + worksz)*sizeof(LM_REAL) + iworksz*sizeof(int); /* should be arranged in that order for proper doubles alignment */
|
|
|
|
buf_sz=tot_sz;
|
|
buf=(LM_REAL *)malloc(buf_sz);
|
|
if(!buf){
|
|
fprintf(stderr, RCAT("memory allocation in ", LEVMAR_PSEUDOINVERSE) "() failed!\n");
|
|
return 0; /* error */
|
|
}
|
|
|
|
a=buf;
|
|
u=a+a_sz;
|
|
s=u+u_sz;
|
|
vt=s+s_sz;
|
|
work=vt+vt_sz;
|
|
iwork=(int *)(work+worksz);
|
|
|
|
/* store A (column major!) into a */
|
|
for(i=0; i<m; i++)
|
|
for(j=0; j<m; j++)
|
|
a[i+j*m]=A[i*m+j];
|
|
|
|
/* SVD decomposition of A */
|
|
GESVD("A", "A", (int *)&m, (int *)&m, a, (int *)&m, s, u, (int *)&m, vt, (int *)&m, work, (int *)&worksz, &info);
|
|
//GESDD("A", (int *)&m, (int *)&m, a, (int *)&m, s, u, (int *)&m, vt, (int *)&m, work, (int *)&worksz, iwork, &info);
|
|
|
|
/* error treatment */
|
|
if(info!=0){
|
|
if(info<0){
|
|
fprintf(stderr, RCAT(RCAT(RCAT("LAPACK error: illegal value for argument %d of ", GESVD), "/" GESDD) " in ", LEVMAR_PSEUDOINVERSE) "()\n", -info);
|
|
}
|
|
else{
|
|
fprintf(stderr, RCAT("LAPACK error: dgesdd (dbdsdc)/dgesvd (dbdsqr) failed to converge in ", LEVMAR_PSEUDOINVERSE) "() [info=%d]\n", info);
|
|
}
|
|
free(buf);
|
|
return 0;
|
|
}
|
|
|
|
if(eps<0.0){
|
|
LM_REAL aux;
|
|
|
|
/* compute machine epsilon */
|
|
for(eps=LM_CNST(1.0); aux=eps+LM_CNST(1.0), aux-LM_CNST(1.0)>0.0; eps*=LM_CNST(0.5))
|
|
;
|
|
eps*=LM_CNST(2.0);
|
|
}
|
|
|
|
/* compute the pseudoinverse in B */
|
|
for(i=0; i<a_sz; i++) B[i]=0.0; /* initialize to zero */
|
|
for(rank=0, thresh=eps*s[0]; rank<m && s[rank]>thresh; rank++){
|
|
one_over_denom=LM_CNST(1.0)/s[rank];
|
|
|
|
for(j=0; j<m; j++)
|
|
for(i=0; i<m; i++)
|
|
B[i*m+j]+=vt[rank+i*m]*u[j+rank*m]*one_over_denom;
|
|
}
|
|
|
|
free(buf);
|
|
|
|
return rank;
|
|
}
|
|
#else // no LAPACK
|
|
|
|
/*
|
|
* This function computes the inverse of A in B. A and B can coincide
|
|
*
|
|
* The function employs LAPACK-free LU decomposition of A to solve m linear
|
|
* systems A*B_i=I_i, where B_i and I_i are the i-th columns of B and I.
|
|
*
|
|
* A and B are mxm
|
|
*
|
|
* The function returns 0 in case of error, 1 if successful
|
|
*
|
|
*/
|
|
static int LEVMAR_LUINVERSE(LM_REAL *A, LM_REAL *B, int m)
|
|
{
|
|
void *buf=NULL;
|
|
int buf_sz=0;
|
|
|
|
register int i, j, k, l;
|
|
int *idx, maxi=-1, idx_sz, a_sz, x_sz, work_sz, tot_sz;
|
|
LM_REAL *a, *x, *work, max, sum, tmp;
|
|
|
|
/* calculate required memory size */
|
|
idx_sz=m;
|
|
a_sz=m*m;
|
|
x_sz=m;
|
|
work_sz=m;
|
|
tot_sz=(a_sz + x_sz + work_sz)*sizeof(LM_REAL) + idx_sz*sizeof(int); /* should be arranged in that order for proper doubles alignment */
|
|
|
|
buf_sz=tot_sz;
|
|
buf=(void *)malloc(tot_sz);
|
|
if(!buf){
|
|
fprintf(stderr, RCAT("memory allocation in ", LEVMAR_LUINVERSE) "() failed!\n");
|
|
return 0; /* error */
|
|
}
|
|
|
|
a=buf;
|
|
x=a+a_sz;
|
|
work=x+x_sz;
|
|
idx=(int *)(work+work_sz);
|
|
|
|
/* avoid destroying A by copying it to a */
|
|
for(i=0; i<a_sz; ++i) a[i]=A[i];
|
|
|
|
/* compute the LU decomposition of a row permutation of matrix a; the permutation itself is saved in idx[] */
|
|
for(i=0; i<m; ++i){
|
|
max=0.0;
|
|
for(j=0; j<m; ++j)
|
|
if((tmp=FABS(a[i*m+j]))>max)
|
|
max=tmp;
|
|
if(max==0.0){
|
|
fprintf(stderr, RCAT("Singular matrix A in ", LEVMAR_LUINVERSE) "()!\n");
|
|
free(buf);
|
|
|
|
return 0;
|
|
}
|
|
work[i]=LM_CNST(1.0)/max;
|
|
}
|
|
|
|
for(j=0; j<m; ++j){
|
|
for(i=0; i<j; ++i){
|
|
sum=a[i*m+j];
|
|
for(k=0; k<i; ++k)
|
|
sum-=a[i*m+k]*a[k*m+j];
|
|
a[i*m+j]=sum;
|
|
}
|
|
max=0.0;
|
|
for(i=j; i<m; ++i){
|
|
sum=a[i*m+j];
|
|
for(k=0; k<j; ++k)
|
|
sum-=a[i*m+k]*a[k*m+j];
|
|
a[i*m+j]=sum;
|
|
if((tmp=work[i]*FABS(sum))>=max){
|
|
max=tmp;
|
|
maxi=i;
|
|
}
|
|
}
|
|
if(j!=maxi){
|
|
for(k=0; k<m; ++k){
|
|
tmp=a[maxi*m+k];
|
|
a[maxi*m+k]=a[j*m+k];
|
|
a[j*m+k]=tmp;
|
|
}
|
|
work[maxi]=work[j];
|
|
}
|
|
idx[j]=maxi;
|
|
if(a[j*m+j]==0.0)
|
|
a[j*m+j]=LM_REAL_EPSILON;
|
|
if(j!=m-1){
|
|
tmp=LM_CNST(1.0)/(a[j*m+j]);
|
|
for(i=j+1; i<m; ++i)
|
|
a[i*m+j]*=tmp;
|
|
}
|
|
}
|
|
|
|
/* The decomposition has now replaced a. Solve the m linear systems using
|
|
* forward and back substitution
|
|
*/
|
|
for(l=0; l<m; ++l){
|
|
for(i=0; i<m; ++i) x[i]=0.0;
|
|
x[l]=LM_CNST(1.0);
|
|
|
|
for(i=k=0; i<m; ++i){
|
|
j=idx[i];
|
|
sum=x[j];
|
|
x[j]=x[i];
|
|
if(k!=0)
|
|
for(j=k-1; j<i; ++j)
|
|
sum-=a[i*m+j]*x[j];
|
|
else
|
|
if(sum!=0.0)
|
|
k=i+1;
|
|
x[i]=sum;
|
|
}
|
|
|
|
for(i=m-1; i>=0; --i){
|
|
sum=x[i];
|
|
for(j=i+1; j<m; ++j)
|
|
sum-=a[i*m+j]*x[j];
|
|
x[i]=sum/a[i*m+i];
|
|
}
|
|
|
|
for(i=0; i<m; ++i)
|
|
B[i*m+l]=x[i];
|
|
}
|
|
|
|
free(buf);
|
|
|
|
return 1;
|
|
}
|
|
#endif /* HAVE_LAPACK */
|
|
|
|
/*
|
|
* This function computes in C the covariance matrix corresponding to a least
|
|
* squares fit. JtJ is the approximate Hessian at the solution (i.e. J^T*J, where
|
|
* J is the Jacobian at the solution), sumsq is the sum of squared residuals
|
|
* (i.e. goodnes of fit) at the solution, m is the number of parameters (variables)
|
|
* and n the number of observations. JtJ can coincide with C.
|
|
*
|
|
* if JtJ is of full rank, C is computed as sumsq/(n-m)*(JtJ)^-1
|
|
* otherwise and if LAPACK is available, C=sumsq/(n-r)*(JtJ)^+
|
|
* where r is JtJ's rank and ^+ denotes the pseudoinverse
|
|
* The diagonal of C is made up from the estimates of the variances
|
|
* of the estimated regression coefficients.
|
|
* See the documentation of routine E04YCF from the NAG fortran lib
|
|
*
|
|
* The function returns the rank of JtJ if successful, 0 on error
|
|
*
|
|
* A and C are mxm
|
|
*
|
|
*/
|
|
int LEVMAR_COVAR(LM_REAL *JtJ, LM_REAL *C, LM_REAL sumsq, int m, int n)
|
|
{
|
|
register int i;
|
|
int rnk;
|
|
LM_REAL fact;
|
|
|
|
#ifdef HAVE_LAPACK
|
|
rnk=LEVMAR_PSEUDOINVERSE(JtJ, C, m);
|
|
if(!rnk) return 0;
|
|
#else
|
|
#ifdef _MSC_VER
|
|
#pragma message("LAPACK not available, LU will be used for matrix inversion when computing the covariance; this might be unstable at times")
|
|
#else
|
|
#warning LAPACK not available, LU will be used for matrix inversion when computing the covariance; this might be unstable at times
|
|
#endif // _MSC_VER
|
|
|
|
rnk=LEVMAR_LUINVERSE(JtJ, C, m);
|
|
if(!rnk) return 0;
|
|
|
|
rnk=m; /* assume full rank */
|
|
#endif /* HAVE_LAPACK */
|
|
|
|
fact=sumsq/(LM_REAL)(n-rnk);
|
|
for(i=0; i<m*m; ++i)
|
|
C[i]*=fact;
|
|
|
|
return rnk;
|
|
}
|
|
|
|
/* standard deviation of the best-fit parameter i.
|
|
* covar is the mxm covariance matrix of the best-fit parameters (see also LEVMAR_COVAR()).
|
|
*
|
|
* The standard deviation is computed as \sigma_{i} = \sqrt{C_{ii}}
|
|
*/
|
|
LM_REAL LEVMAR_STDDEV(LM_REAL *covar, int m, int i)
|
|
{
|
|
return (LM_REAL)sqrt(covar[i*m+i]);
|
|
}
|
|
|
|
/* Pearson's correlation coefficient of the best-fit parameters i and j.
|
|
* covar is the mxm covariance matrix of the best-fit parameters (see also LEVMAR_COVAR()).
|
|
*
|
|
* The coefficient is computed as \rho_{ij} = C_{ij} / sqrt(C_{ii} C_{jj})
|
|
*/
|
|
LM_REAL LEVMAR_CORCOEF(LM_REAL *covar, int m, int i, int j)
|
|
{
|
|
return (LM_REAL)(covar[i*m+j]/sqrt(covar[i*m+i]*covar[j*m+j]));
|
|
}
|
|
|
|
/* coefficient of determination.
|
|
* see http://en.wikipedia.org/wiki/Coefficient_of_determination
|
|
*/
|
|
LM_REAL LEVMAR_R2(void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata),
|
|
LM_REAL *p, LM_REAL *x, int m, int n, void *adata)
|
|
{
|
|
register int i;
|
|
register LM_REAL tmp;
|
|
LM_REAL SSerr, // sum of squared errors, i.e. residual sum of squares \sum_i (x_i-hx_i)^2
|
|
SStot, // \sum_i (x_i-xavg)^2
|
|
*hx, xavg;
|
|
|
|
|
|
if((hx=(LM_REAL *)malloc(n*sizeof(LM_REAL)))==NULL){
|
|
fprintf(stderr, RCAT("memory allocation request failed in ", LEVMAR_R2) "()\n");
|
|
exit(1);
|
|
}
|
|
|
|
/* hx=f(p) */
|
|
(*func)(p, hx, m, n, adata);
|
|
|
|
for(i=n, tmp=0.0; i-->0; )
|
|
tmp+=x[i];
|
|
xavg=tmp/(LM_REAL)n;
|
|
|
|
if(x)
|
|
for(i=n, SSerr=SStot=0.0; i-->0; ){
|
|
tmp=x[i]-hx[i];
|
|
SSerr+=tmp*tmp;
|
|
|
|
tmp=x[i]-xavg;
|
|
SStot+=tmp*tmp;
|
|
}
|
|
else /* x==0 */
|
|
for(i=n, SSerr=SStot=0.0; i-->0; ){
|
|
tmp=-hx[i];
|
|
SSerr+=tmp*tmp;
|
|
|
|
tmp=-xavg;
|
|
SStot+=tmp*tmp;
|
|
}
|
|
|
|
free(hx);
|
|
|
|
return LM_CNST(1.0) - SSerr/SStot;
|
|
}
|
|
|
|
/* check box constraints for consistency */
|
|
int LEVMAR_BOX_CHECK(LM_REAL *lb, LM_REAL *ub, int m)
|
|
{
|
|
register int i;
|
|
|
|
if(!lb || !ub) return 1;
|
|
|
|
for(i=0; i<m; ++i)
|
|
if(lb[i]>ub[i]) return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
#ifdef HAVE_LAPACK
|
|
|
|
/* compute the Cholesky decomposition of C in W, s.t. C=W^t W and W is upper triangular */
|
|
int LEVMAR_CHOLESKY(LM_REAL *C, LM_REAL *W, int m)
|
|
{
|
|
register int i, j;
|
|
int info;
|
|
|
|
/* copy weights array C to W so that LAPACK won't destroy it;
|
|
* C is assumed symmetric, hence no transposition is needed
|
|
*/
|
|
for(i=0, j=m*m; i<j; ++i)
|
|
W[i]=C[i];
|
|
|
|
/* Cholesky decomposition */
|
|
POTF2("L", (int *)&m, W, (int *)&m, (int *)&info);
|
|
/* error treatment */
|
|
if(info!=0){
|
|
if(info<0){
|
|
fprintf(stderr, "LAPACK error: illegal value for argument %d of dpotf2 in %s\n", -info, LCAT(LEVMAR_CHOLESKY, "()"));
|
|
}
|
|
else{
|
|
fprintf(stderr, "LAPACK error: the leading minor of order %d is not positive definite,\n%s()\n", info,
|
|
RCAT("and the Cholesky factorization could not be completed in ", LEVMAR_CHOLESKY));
|
|
}
|
|
return LM_ERROR;
|
|
}
|
|
|
|
/* the decomposition is in the lower part of W (in column-major order!).
|
|
* zeroing the upper part makes it lower triangular which is equivalent to
|
|
* upper triangular in row-major order
|
|
*/
|
|
for(i=0; i<m; i++)
|
|
for(j=i+1; j<m; j++)
|
|
W[i+j*m]=0.0;
|
|
|
|
return 0;
|
|
}
|
|
#endif /* HAVE_LAPACK */
|
|
|
|
|
|
/* Compute e=x-y for two n-vectors x and y and return the squared L2 norm of e.
|
|
* e can coincide with either x or y; x can be NULL, in which case it is assumed
|
|
* to be equal to the zero vector.
|
|
* Uses loop unrolling and blocking to reduce bookkeeping overhead & pipeline
|
|
* stalls and increase instruction-level parallelism; see http://www.abarnett.demon.co.uk/tutorial.html
|
|
*/
|
|
|
|
LM_REAL LEVMAR_L2NRMXMY(LM_REAL *e, LM_REAL *x, LM_REAL *y, int n)
|
|
{
|
|
const int blocksize=8, bpwr=3; /* 8=2^3 */
|
|
register int i;
|
|
int j1, j2, j3, j4, j5, j6, j7;
|
|
int blockn;
|
|
register LM_REAL sum0=0.0, sum1=0.0, sum2=0.0, sum3=0.0;
|
|
|
|
/* n may not be divisible by blocksize,
|
|
* go as near as we can first, then tidy up.
|
|
*/
|
|
blockn = (n>>bpwr)<<bpwr; /* (n / blocksize) * blocksize; */
|
|
|
|
/* unroll the loop in blocks of `blocksize'; looping downwards gains some more speed */
|
|
if(x){
|
|
for(i=blockn-1; i>0; i-=blocksize){
|
|
e[i ]=x[i ]-y[i ]; sum0+=e[i ]*e[i ];
|
|
j1=i-1; e[j1]=x[j1]-y[j1]; sum1+=e[j1]*e[j1];
|
|
j2=i-2; e[j2]=x[j2]-y[j2]; sum2+=e[j2]*e[j2];
|
|
j3=i-3; e[j3]=x[j3]-y[j3]; sum3+=e[j3]*e[j3];
|
|
j4=i-4; e[j4]=x[j4]-y[j4]; sum0+=e[j4]*e[j4];
|
|
j5=i-5; e[j5]=x[j5]-y[j5]; sum1+=e[j5]*e[j5];
|
|
j6=i-6; e[j6]=x[j6]-y[j6]; sum2+=e[j6]*e[j6];
|
|
j7=i-7; e[j7]=x[j7]-y[j7]; sum3+=e[j7]*e[j7];
|
|
}
|
|
|
|
/*
|
|
* There may be some left to do.
|
|
* This could be done as a simple for() loop,
|
|
* but a switch is faster (and more interesting)
|
|
*/
|
|
|
|
i=blockn;
|
|
if(i<n){
|
|
/* Jump into the case at the place that will allow
|
|
* us to finish off the appropriate number of items.
|
|
*/
|
|
|
|
switch(n - i){
|
|
case 7 : e[i]=x[i]-y[i]; sum0+=e[i]*e[i]; ++i;
|
|
case 6 : e[i]=x[i]-y[i]; sum1+=e[i]*e[i]; ++i;
|
|
case 5 : e[i]=x[i]-y[i]; sum2+=e[i]*e[i]; ++i;
|
|
case 4 : e[i]=x[i]-y[i]; sum3+=e[i]*e[i]; ++i;
|
|
case 3 : e[i]=x[i]-y[i]; sum0+=e[i]*e[i]; ++i;
|
|
case 2 : e[i]=x[i]-y[i]; sum1+=e[i]*e[i]; ++i;
|
|
case 1 : e[i]=x[i]-y[i]; sum2+=e[i]*e[i]; //++i;
|
|
}
|
|
}
|
|
}
|
|
else{ /* x==0 */
|
|
for(i=blockn-1; i>0; i-=blocksize){
|
|
e[i ]=-y[i ]; sum0+=e[i ]*e[i ];
|
|
j1=i-1; e[j1]=-y[j1]; sum1+=e[j1]*e[j1];
|
|
j2=i-2; e[j2]=-y[j2]; sum2+=e[j2]*e[j2];
|
|
j3=i-3; e[j3]=-y[j3]; sum3+=e[j3]*e[j3];
|
|
j4=i-4; e[j4]=-y[j4]; sum0+=e[j4]*e[j4];
|
|
j5=i-5; e[j5]=-y[j5]; sum1+=e[j5]*e[j5];
|
|
j6=i-6; e[j6]=-y[j6]; sum2+=e[j6]*e[j6];
|
|
j7=i-7; e[j7]=-y[j7]; sum3+=e[j7]*e[j7];
|
|
}
|
|
|
|
/*
|
|
* There may be some left to do.
|
|
* This could be done as a simple for() loop,
|
|
* but a switch is faster (and more interesting)
|
|
*/
|
|
|
|
i=blockn;
|
|
if(i<n){
|
|
/* Jump into the case at the place that will allow
|
|
* us to finish off the appropriate number of items.
|
|
*/
|
|
|
|
switch(n - i){
|
|
case 7 : e[i]=-y[i]; sum0+=e[i]*e[i]; ++i;
|
|
case 6 : e[i]=-y[i]; sum1+=e[i]*e[i]; ++i;
|
|
case 5 : e[i]=-y[i]; sum2+=e[i]*e[i]; ++i;
|
|
case 4 : e[i]=-y[i]; sum3+=e[i]*e[i]; ++i;
|
|
case 3 : e[i]=-y[i]; sum0+=e[i]*e[i]; ++i;
|
|
case 2 : e[i]=-y[i]; sum1+=e[i]*e[i]; ++i;
|
|
case 1 : e[i]=-y[i]; sum2+=e[i]*e[i]; //++i;
|
|
}
|
|
}
|
|
}
|
|
|
|
return sum0+sum1+sum2+sum3;
|
|
}
|
|
|
|
/* undefine everything. THIS MUST REMAIN AT THE END OF THE FILE */
|
|
#undef POTF2
|
|
#undef GESVD
|
|
#undef GESDD
|
|
#undef GEMM
|
|
#undef LEVMAR_PSEUDOINVERSE
|
|
#undef LEVMAR_LUINVERSE
|
|
#undef LEVMAR_BOX_CHECK
|
|
#undef LEVMAR_CHOLESKY
|
|
#undef LEVMAR_COVAR
|
|
#undef LEVMAR_STDDEV
|
|
#undef LEVMAR_CORCOEF
|
|
#undef LEVMAR_R2
|
|
#undef LEVMAR_CHKJAC
|
|
#undef LEVMAR_FDIF_FORW_JAC_APPROX
|
|
#undef LEVMAR_FDIF_CENT_JAC_APPROX
|
|
#undef LEVMAR_TRANS_MAT_MAT_MULT
|
|
#undef LEVMAR_L2NRMXMY
|