Files
GoldenCheetah/src/BikeScore.cpp
Joern 0c0ca57e45 Bikescore (TM) unique handling all languages & Translation Enablement
... sync handling of (TM) in all places and Do Not allow translation for
these terms any more, since it's a fixed term anyway - and there are
many dependencies (which outside EN create unexpected results). - in all
Texts/Fields use (TM) in HTML use the TM (special characters).

-- more testing in language other then EN still required - but so far
working fine

... and more tr()
2014-06-10 20:55:41 +02:00

460 lines
14 KiB
C++

/*
* Copyright (c) 2008 Sean C. Rhea (srhea@srhea.net)
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc., 51
* Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "RideMetric.h"
#include "Zones.h"
#include <math.h>
#include <QApplication>
const double bikeScoreN = 4.0;
// NOTE: This code follows the description of xPower, Relative Intensity, and
// BikeScore in "Analysis of Power Output and Training Stress in Cyclists: The
// Development of the BikeScore(TM) Algorithm", page 5, by Phil Skiba:
//
// http://www.physfarm.com/Analysis%20of%20Power%20Output%20and%20Training%20Stress%20in%20Cyclists-%20BikeScore.pdf
//
// The weighting factors for the exponentially weighted average are taken from
// a spreadsheet provided by Dr. Skiba.
class XPower : public RideMetric {
Q_DECLARE_TR_FUNCTIONS(XPower)
double xpower;
double secs;
public:
XPower() : xpower(0.0), secs(0.0)
{
setSymbol("skiba_xpower");
setInternalName("xPower");
}
void initialize() {
setName(tr("xPower"));
setType(RideMetric::Average);
setMetricUnits(tr("watts"));
setImperialUnits(tr("watts"));
}
void compute(const RideFile *ride, const Zones *, int,
const HrZones *, int,
const QHash<QString,RideMetric*> &,
const Context *) {
static const double EPSILON = 0.1;
static const double NEGLIGIBLE = 0.1;
double secsDelta = ride->recIntSecs();
double sampsPerWindow = 25.0 / secsDelta;
double attenuation = sampsPerWindow / (sampsPerWindow + secsDelta);
double sampleWeight = secsDelta / (sampsPerWindow + secsDelta);
double lastSecs = 0.0;
double weighted = 0.0;
double total = 0.0;
int count = 0;
foreach(const RideFilePoint *point, ride->dataPoints()) {
while ((weighted > NEGLIGIBLE)
&& (point->secs > lastSecs + secsDelta + EPSILON)) {
weighted *= attenuation;
lastSecs += secsDelta;
total += pow(weighted, 4.0);
count++;
}
weighted *= attenuation;
weighted += sampleWeight * point->watts;
lastSecs = point->secs;
total += pow(weighted, 4.0);
count++;
}
xpower = pow(total / count, 0.25);
secs = count * secsDelta;
setValue(xpower);
setCount(secs);
}
RideMetric *clone() const { return new XPower(*this); }
};
class VariabilityIndex : public RideMetric {
Q_DECLARE_TR_FUNCTIONS(VariabilityIndex)
double vi;
double secs;
public:
VariabilityIndex() : vi(0.0), secs(0.0)
{
setSymbol("skiba_variability_index");
setInternalName("Skiba VI");
}
void initialize() {
setName(tr("Skiba VI"));
setType(RideMetric::Average);
setMetricUnits(tr(""));
setImperialUnits(tr(""));
setPrecision(3);
}
void compute(const RideFile *, const Zones *, int,
const HrZones *, int,
const QHash<QString,RideMetric*> &deps,
const Context *) {
assert(deps.contains("skiba_xpower"));
assert(deps.contains("average_power"));
XPower *xp = dynamic_cast<XPower*>(deps.value("skiba_xpower"));
assert(xp);
RideMetric *ap = dynamic_cast<RideMetric*>(deps.value("average_power"));
assert(ap);
vi = xp->value(true) / ap->value(true);
secs = xp->count();
setValue(vi);
}
RideMetric *clone() const { return new VariabilityIndex(*this); }
};
class RelativeIntensity : public RideMetric {
Q_DECLARE_TR_FUNCTIONS(RelativeIntensity)
double reli;
double secs;
public:
RelativeIntensity() : reli(0.0), secs(0.0)
{
setSymbol("skiba_relative_intensity");
setInternalName("Relative Intensity");
}
void initialize() {
setName(tr("Relative Intensity"));
setType(RideMetric::Average);
setMetricUnits(tr(""));
setImperialUnits(tr(""));
setPrecision(3);
}
void compute(const RideFile *r, const Zones *zones, int zoneRange,
const HrZones *, int,
const QHash<QString,RideMetric*> &deps,
const Context *) {
if (zones && zoneRange >= 0) {
assert(deps.contains("skiba_xpower"));
XPower *xp = dynamic_cast<XPower*>(deps.value("skiba_xpower"));
assert(xp);
int cp = r->getTag("CP","0").toInt();
reli = xp->value(true) / (cp ? cp : zones->getCP(zoneRange));
secs = xp->count();
}
setValue(reli);
setCount(secs);
}
// added djconnel: allow RI to be combined across rides
bool canAggregate() { return true; }
void aggregateWith(const RideMetric &other) {
assert(symbol() == other.symbol());
const RelativeIntensity &ap = dynamic_cast<const RelativeIntensity&>(other);
reli = secs * pow(reli, bikeScoreN) + ap.count() * pow(ap.value(true), bikeScoreN);
secs += ap.count();
reli = pow(reli / secs, 1.0 / bikeScoreN);
setValue(reli);
}
// end added djconnel
RideMetric *clone() const { return new RelativeIntensity(*this); }
};
class CriticalPower : public RideMetric {
Q_DECLARE_TR_FUNCTIONS(CriticalPower)
public:
CriticalPower()
{
setSymbol("cp_setting");
setInternalName("CP setting");
}
void initialize() {
setName(tr("Critical Power"));
setType(RideMetric::Average);
setMetricUnits(tr(""));
setImperialUnits(tr(""));
setPrecision(0);
}
void compute(const RideFile *r, const Zones *zones, int zoneRange,
const HrZones *, int,
const QHash<QString,RideMetric*> &,
const Context *) {
// did user override for this ride?
int cp = r->getTag("CP","0").toInt();
// not overriden so use the set value
// if it has been set at all
if (!cp && zones && zoneRange >= 0)
cp = zones->getCP(zoneRange);
setValue(cp);
}
bool canAggregate() { return true; }
void aggregateWith(const RideMetric &other) {
assert(symbol() == other.symbol());
setValue(other.value(true) > value(true) ? other.value(true) : value(true));
}
RideMetric *clone() const { return new CriticalPower(*this); }
};
class aTISS : public RideMetric {
Q_DECLARE_TR_FUNCTIONS(aTISS)
public:
aTISS()
{
setSymbol("atiss_score");
setInternalName("Aerobic TISS");
}
void initialize() {
setName(tr("Aerobic TISS"));
setMetricUnits("");
setImperialUnits("");
}
void compute(const RideFile *r, const Zones *zones, int zoneRange,
const HrZones *, int,
const QHash<QString,RideMetric*> &,
const Context *) {
if (!zones || zoneRange < 0)
return;
// aTISS - Aerobic Training Impact Scoring System
static const double a = 0.663788683661645f;
static const double b = -7.5095428451195;
static const double c = -0.86118031563782;
double aTISS = 0.0f;
int cp = r->getTag("CP","0").toInt();
if (!cp) cp = zones->getCP(zoneRange);
if (cp && r->areDataPresent()->watts) {
foreach (RideFilePoint *p, r->dataPoints()) {
// a * exp (b * exp (c * fraction of cp) )
aTISS += r->recIntSecs() * (a * exp(b * exp(c * (double(p->watts) / double(cp)))));
}
}
setValue(aTISS);
}
RideMetric *clone() const { return new aTISS(*this); }
};
class anTISS : public RideMetric {
Q_DECLARE_TR_FUNCTIONS(aTISS)
public:
anTISS()
{
setSymbol("antiss_score");
setInternalName("Anaerobic TISS");
}
void initialize() {
setName(tr("Anaerobic TISS"));
setMetricUnits("");
setImperialUnits("");
}
void compute(const RideFile *r, const Zones *zones, int zoneRange,
const HrZones *, int,
const QHash<QString,RideMetric*> &,
const Context *) {
if (!zones || zoneRange < 0)
return;
// anTISS - Aerobic Training Impact Scoring System
static const double a = 0.238923886004611f;
//static const double b = -12.2066385296127f;
static const double b = -61.849f;
static const double c = -1.73549567522521f;
double anTISS = 0.0f;
int cp = r->getTag("CP","0").toInt();
if (!cp) cp = zones->getCP(zoneRange);
if (cp && r->areDataPresent()->watts) {
foreach (RideFilePoint *p, r->dataPoints()) {
// a * exp (b * exp (c * fraction of cp) )
anTISS += r->recIntSecs() * (a * exp(b * exp(c * (double(p->watts) / double(cp)))));
}
}
setValue(anTISS);
}
RideMetric *clone() const { return new anTISS(*this); }
};
class dTISS : public RideMetric {
Q_DECLARE_TR_FUNCTIONS(dTISS)
public:
dTISS()
{
setSymbol("tiss_delta");
setInternalName("TISS Aerobicity");
setType(RideMetric::Average);
}
void initialize() {
setName(tr("TISS Aerobicity"));
setMetricUnits("Percent");
setImperialUnits("Percent");
}
void compute(const RideFile *, const Zones *zones, int zoneRange,
const HrZones *, int,
const QHash<QString,RideMetric*> &deps,
const Context *) {
if (!zones || zoneRange < 0)
return;
assert(deps.contains("atiss_score"));
assert(deps.contains("antiss_score"));
double atscore = dynamic_cast<aTISS*>(deps.value("atiss_score"))->value(true);
double antscore = dynamic_cast<anTISS*>(deps.value("antiss_score"))->value(true);
// we don't like nan results
if (atscore == 0.00 && antscore == 0.00) setValue(0.0);
else setValue((atscore/(atscore+antscore)) * 100.00f);
}
RideMetric *clone() const { return new dTISS(*this); }
};
class BikeScore : public RideMetric {
Q_DECLARE_TR_FUNCTIONS(BikeScore)
double score;
public:
BikeScore() : score(0.0)
{
setSymbol("skiba_bike_score");
setInternalName("BikeScore&#8482;");
}
void initialize() {
setName("BikeScore&#8482;"); // Don't translate as many places have special coding for the "TM" sign
setMetricUnits("");
setImperialUnits("");
}
void compute(const RideFile *r, const Zones *zones, int zoneRange,
const HrZones *, int,
const QHash<QString,RideMetric*> &deps,
const Context *) {
if (!zones || zoneRange < 0)
return;
assert(deps.contains("skiba_xpower"));
assert(deps.contains("skiba_relative_intensity"));
XPower *xp = dynamic_cast<XPower*>(deps.value("skiba_xpower"));
RideMetric *ri = deps.value("skiba_relative_intensity");
assert(ri);
double normWork = xp->value(true) * xp->count();
double rawBikeScore = normWork * ri->value(true);
int cp = r->getTag("CP","0").toInt();
double workInAnHourAtCP = (cp ? cp : zones->getCP(zoneRange)) * 3600;
score = rawBikeScore / workInAnHourAtCP * 100.0;
setValue(score);
}
RideMetric *clone() const { return new BikeScore(*this); }
};
class ResponseIndex : public RideMetric {
Q_DECLARE_TR_FUNCTIONS(ResponseIndex)
double ri;
public:
ResponseIndex() : ri(0.0)
{
setSymbol("skiba_response_index");
setInternalName("Response Index");
}
void initialize() {
setName(tr("Response Index"));
setType(RideMetric::Average);
setMetricUnits(tr(""));
setImperialUnits(tr(""));
setPrecision(3);
}
void compute(const RideFile *, const Zones *, int,
const HrZones *, int,
const QHash<QString,RideMetric*> &deps,
const Context *) {
assert(deps.contains("skiba_xpower"));
assert(deps.contains("average_hr"));
XPower *xp = dynamic_cast<XPower*>(deps.value("skiba_xpower"));
assert(xp);
RideMetric *ah = dynamic_cast<RideMetric*>(deps.value("average_hr"));
assert(ah);
ri = xp->value(true) / ah->value(true);
setValue(ri);
}
RideMetric *clone() const { return new ResponseIndex(*this); }
};
static bool addAllSix() {
RideMetricFactory::instance().addMetric(aTISS());
RideMetricFactory::instance().addMetric(anTISS());
RideMetricFactory::instance().addMetric(CriticalPower());
RideMetricFactory::instance().addMetric(XPower());
QVector<QString> deps;
deps.append("skiba_xpower");
RideMetricFactory::instance().addMetric(RelativeIntensity(), &deps);
deps.append("skiba_relative_intensity");
RideMetricFactory::instance().addMetric(BikeScore(), &deps);
deps.clear();
deps.append("skiba_xpower");
deps.append("average_power");
RideMetricFactory::instance().addMetric(VariabilityIndex(), &deps);
deps.clear();
deps.append("atiss_score");
deps.append("antiss_score");
RideMetricFactory::instance().addMetric(dTISS(), &deps);
deps.clear();
deps.append("skiba_xpower");
deps.append("average_hr");
RideMetricFactory::instance().addMetric(ResponseIndex(), &deps);
return true;
}
static bool allSixAdded = addAllSix();