MetricAggregator Model Refresh (Part 2 of 3)

.. the critical power models are now refactored to have a
   base class PDModel.

.. I have implemented the 2 and 3 parameter models as well as
   the veloclinic models

.. the ExtendedModel needs to be aligned

.. next steps are to put these values into a store and allow
   them to be plotted on the LTM charts.
This commit is contained in:
Mark Liversedge
2014-05-10 12:00:26 +01:00
parent 297d9003b8
commit 6489af3a73
8 changed files with 688 additions and 9 deletions

446
src/PDModel.cpp Normal file
View File

@@ -0,0 +1,446 @@
/*
* Copyright (c) 2014 Mark Liversedge (liversedge@gmail.com)
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc., 51
* Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "PDModel.h"
// base class for all models
PDModel::PDModel(Context *context) :
QwtSyntheticPointData(PDMODEL_MAXT),
context(context),
sanI1(0), sanI2(0), anI1(0), anI2(0), aeI1(0), aeI2(0), laeI1(0), laeI2(0),
cp(0), tau(0), t0(0)
{
setInterval(QwtInterval(1, PDMODEL_MAXT));
}
// set data using doubles always
void
PDModel::setData(QVector<double> meanMaxPower)
{
cp = tau = t0 = 0; // reset on new data
data.resize(meanMaxPower.size());
data = meanMaxPower;
emit dataChanged();
}
// set data using floats, we convert
void
PDModel::setData(QVector<float> meanMaxPower)
{
cp = tau = t0 = 0; // reset on new data
data.resize(meanMaxPower.size());
for (int i=0; i< data.size(); i++) data[i] = meanMaxPower[i];
emit dataChanged();
}
// set the intervals to search for bests
void
PDModel::setIntervals(double sanI1, double sanI2, double anI1, double anI2,
double aeI1, double aeI2, double laeI1, double laeI2)
{
this->sanI1 = sanI1;
this->sanI2 = sanI2;
this->anI1 = anI1;
this->anI2 = anI2;
this->aeI1 = aeI1;
this->aeI2 = aeI2;
this->laeI1 = laeI1;
this->laeI2 = laeI2;
emit intervalsChanged();
}
// using the data and intervals from above, derive the
// cp, tau and t0 values needed for the model
// this is the function originally found in CPPlot
void
PDModel::deriveCPParameters(bool three)
{
// bounds on anaerobic interval in minutes
const double t1 = anI1;
const double t2 = anI2;
// bounds on aerobic interval in minutes
const double t3 = aeI1;
const double t4 = aeI2;
// bounds of these time valus in the data
int i1, i2, i3, i4;
// find the indexes associated with the bounds
// the first point must be at least the minimum for the anaerobic interval, or quit
for (i1 = 0; i1 < t1; i1++)
if (i1 + 1 > data.size())
return;
// the second point is the maximum point suitable for anaerobicly dominated efforts.
for (i2 = i1; i2 + 1 <= t2; i2++)
if (i2 + 1 > data.size())
return;
// the third point is the beginning of the minimum duration for aerobic efforts
for (i3 = i2; i3 < t3; i3++)
if (i3 + 1 > data.size())
return;
for (i4 = i3; i4 + 1 <= t4; i4++)
if (i4 + 1 > data.size())
break;
// initial estimate of tau
if (tau == 0) tau = 1;
// initial estimate of cp (if not already available)
if (cp == 0) cp = 300;
// initial estimate of t0: start small to maximize sensitivity to data
t0 = 0;
// lower bound on tau
const double tau_min = 0.5;
// convergence delta for tau
const double tau_delta_max = 1e-4;
const double t0_delta_max = 1e-4;
// previous loop value of tau and t0
double tau_prev;
double t0_prev;
// maximum number of loops
const int max_loops = 100;
// loop to convergence
int iteration = 0;
do {
// bounds check, don't go on for ever
if (iteration++ > max_loops) break;
// record the previous version of tau, for convergence
tau_prev = tau;
t0_prev = t0;
// estimate cp, given tau
int i;
cp = 0;
for (i = i3; i < i4; i++) {
double cpn = data[i] / (1 + tau / (t0 + i / 60.0));
if (cp < cpn)
cp = cpn;
}
// if cp = 0; no valid data; give up
if (cp == 0.0)
return;
// estimate tau, given cp
tau = tau_min;
for (i = i1; i <= i2; i++) {
double taun = (data[i] / cp - 1) * (i / 60.0 + t0) - t0;
if (tau < taun)
tau = taun;
}
// estimate t0 - but only for veloclinic/3parm cp
if (three) t0 = tau / (data[1] / cp - 1) - 1 / 60.0;
} while ((fabs(tau - tau_prev) > tau_delta_max) || (fabs(t0 - t0_prev) > t0_delta_max));
}
//
// Classic 2 Parameter Model
//
CP2Model::CP2Model(Context *context) :
PDModel(context)
{
// set default intervals to search CP 2-20
anI1=100;
anI2=120;
aeI1=1000;
aeI2=1200;
connect (this, SIGNAL(dataChanged()), this, SLOT(onDataChanged()));
connect (this, SIGNAL(intervalsChanged()), this, SLOT(onIntervalsChanged()));
}
// P(t) - return y for t in 2 parameter model
double
CP2Model::y(double t) const
{
// classic model - W' / t + CP
return (cp * tau * 60) / t + cp;
}
// 2 parameter model can calculate these
int
CP2Model::WPrime()
{
// kjoules
return (cp * tau * 60);
}
int
CP2Model::CP()
{
return cp;
}
// could have just connected signal to slot
// but might want to be more sophisticated in future
void CP2Model::onDataChanged()
{
// calc tau etc and make sure the interval is
// set corretly - i.e. 'domain of validity'
deriveCPParameters();
setInterval(QwtInterval(tau, PDMODEL_MAXT));
}
void CP2Model::onIntervalsChanged()
{
deriveCPParameters();
setInterval(QwtInterval(tau, PDMODEL_MAXT));
}
//
// Morton 3 Parameter Model
//
CP3Model::CP3Model(Context *context) :
PDModel(context)
{
// set default intervals to search CP 30-60
anI1=1800;
anI2=2400;
aeI1=2400;
aeI2=3600;
connect (this, SIGNAL(dataChanged()), this, SLOT(onDataChanged()));
connect (this, SIGNAL(intervalsChanged()), this, SLOT(onIntervalsChanged()));
}
// P(t) - return y for t in 2 parameter model
double
CP3Model::y(double t) const
{
// classic model - W' / t + CP
return cp * (double(1.00f)+tau /(((double(t)/double(60))+t0)));
}
// 2 parameter model can calculate these
int
CP3Model::WPrime()
{
// kjoules
return (cp * tau * 60);
}
int
CP3Model::CP()
{
return cp;
}
int
CP3Model::PMax()
{
// casting to double across to ensure we don't lose precision
// but basically its the max value of the curve at time t of 1s
// which is cp * 1 + tau / ((t/60) + t0)
return cp * (double(1.00f)+tau /(((double(1)/double(60))+t0)));
}
// could have just connected signal to slot
// but might want to be more sophisticated in future
void CP3Model::onDataChanged()
{
// calc tau etc and make sure the interval is
// set corretly - i.e. 'domain of validity'
deriveCPParameters(true);
setInterval(QwtInterval(tau, PDMODEL_MAXT));
}
void CP3Model::onIntervalsChanged()
{
deriveCPParameters(true);
setInterval(QwtInterval(tau, PDMODEL_MAXT));
}
//
// Veloclinic Multicomponent Model
//
// p(t) = pc1 + pc2
// Power at time t is the sum of;
// pc1 - the power from component 1 (fast twitch pools)
// pc2 - the power from component 2 (slow twitch motor units)
//
// The inputs are derived from the CP2-20 model and 3 constants:
//
// Pmax - as derived from the CP2-20 model (via t0)
// w1 - W' as derived from the CP2-20 model
// p1 - pmax - cp as derived from the CP2-20 model
// p2 - cp as derived from the CP2-20 model
// tau1 - W'1 / p1
// tau2 - 15,000
// w2 - A slow twitch W' derived from p2 * tau2
// alpha- 0.1 thru -0.1, we default to zero
// beta - 1.0
//
// Fast twitch component is:
// pc1(t) = W'1 / t * (1-exp(-t/tau1)) * ((1-exp(-t/10)) ^ (1/alpha))
//
// Slow twitch component has three formulations:
// sprint capped linear) pc2(t) = p2 * tau2 * (1-exp(-t/tau2))
// sprint capped regeneration) pc2(t) = p2 / (1 + t/tau2)
// sprint capped exponential) pc2(t) = p2 / (1 + t/5400) ^ (1/beta)
//
// Currently deciding which of the three formulations to use
// as the base for GoldenCheetah (we have enough models already !)
MultiModel::MultiModel(Context *context) :
PDModel(context)
{
// set default intervals to search CP 30-60
// uses the same as the 3 parameter model
anI1=1800;
anI2=2400;
aeI1=2400;
aeI2=3600;
variant = 0; // use exp top/bottom by default.
connect (this, SIGNAL(dataChanged()), this, SLOT(onDataChanged()));
connect (this, SIGNAL(intervalsChanged()), this, SLOT(onIntervalsChanged()));
}
void
MultiModel::setVariant(int variant)
{
this->variant = variant;
emit intervalsChanged(); // refresh then
}
// P(t) - return y for t in 2 parameter model
double
MultiModel::y(double t) const
{
// two component model
double pc1 = w1 / t * (1.00f - exp(-t/tau1)) * pow(1-exp(-t/10), alpha);
// which variant for pc2 ?
double pc2 = 0.0f;
switch (variant) {
default:
case 0 : // exponential top and bottom
pc2 = p2 * tau2 / t * (1-exp(-t/tau2));
break;
case 1 : // linear feedback
pc2 = p2 / (1+t/tau2);
break;
case 2 : // regeneration
pc2 = pow(p2 / (1+t/5400),1/beta);
//pc2 = p2 / pow((1+t/5400),(1/beta));
break;
}
return pc1 + pc2;
}
int
MultiModel::FTP()
{
if (data.size()) return y(3600);
return 0;
}
// 2 parameter model can calculate these
int
MultiModel::WPrime()
{
// kjoules -- add in difference between CP60 from
// velo model and cp as derived
return w1;
}
int
MultiModel::CP()
{
if (data.size()) return y(3600);
return 0;
}
int
MultiModel::PMax()
{
// casting to double across to ensure we don't lose precision
// but basically its the max value of the curve at time t of 1s
// which is cp * 1 + tau / ((t/60) + t0)
return cp * (double(1.00f)+tau /(((double(1)/double(60))+t0)));
}
// could have just connected signal to slot
// but might want to be more sophisticated in future
void MultiModel::onDataChanged()
{
// calc tau etc and make sure the interval is
// set corretly - i.e. 'domain of validity'
deriveCPParameters(true);
// and veloclinic paramters too;
w1 = cp*tau*60; // initial estimate from classic cp model
p1 = PMax() - cp;
p2 = cp;
tau1 = w1 / p1;
tau2 = 15000;
alpha = 0.0f;
beta = 1.0;
// now account for model -- this is rather problematic
// since the formula uses cp/w' as derived via CP220 but
// the resulting W' is higher.
w1 = (cp + (cp-CP())) * tau * 60;
setInterval(QwtInterval(tau, PDMODEL_MAXT));
}
void MultiModel::onIntervalsChanged()
{
deriveCPParameters(true);
// and veloclinic paramters too;
w1 = cp*tau*60; // initial estimate from classic model
p1 = PMax() - cp;
p2 = cp;
tau1 = w1 / p1;
tau2 = 15000;
alpha = 0.0f;
beta = 1.0;
// now account for model -- this is rather problematic
// since the formula uses cp/w' as derived via CP220 but
// the resulting W' is higher.
w1 = (cp + (cp-CP())) * tau * 60;
setInterval(QwtInterval(tau, PDMODEL_MAXT));
}