mirror of
https://github.com/GoldenCheetah/GoldenCheetah.git
synced 2026-02-15 00:49:55 +00:00
.. the critical power models are now refactored to have a base class PDModel. .. I have implemented the 2 and 3 parameter models as well as the veloclinic models .. the ExtendedModel needs to be aligned .. next steps are to put these values into a store and allow them to be plotted on the LTM charts.
447 lines
11 KiB
C++
447 lines
11 KiB
C++
/*
|
|
* Copyright (c) 2014 Mark Liversedge (liversedge@gmail.com)
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by the Free
|
|
* Software Foundation; either version 2 of the License, or (at your option)
|
|
* any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program; if not, write to the Free Software Foundation, Inc., 51
|
|
* Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
#include "PDModel.h"
|
|
|
|
// base class for all models
|
|
PDModel::PDModel(Context *context) :
|
|
QwtSyntheticPointData(PDMODEL_MAXT),
|
|
context(context),
|
|
sanI1(0), sanI2(0), anI1(0), anI2(0), aeI1(0), aeI2(0), laeI1(0), laeI2(0),
|
|
cp(0), tau(0), t0(0)
|
|
{
|
|
setInterval(QwtInterval(1, PDMODEL_MAXT));
|
|
}
|
|
|
|
// set data using doubles always
|
|
void
|
|
PDModel::setData(QVector<double> meanMaxPower)
|
|
{
|
|
cp = tau = t0 = 0; // reset on new data
|
|
data.resize(meanMaxPower.size());
|
|
data = meanMaxPower;
|
|
emit dataChanged();
|
|
}
|
|
|
|
// set data using floats, we convert
|
|
void
|
|
PDModel::setData(QVector<float> meanMaxPower)
|
|
{
|
|
cp = tau = t0 = 0; // reset on new data
|
|
data.resize(meanMaxPower.size());
|
|
for (int i=0; i< data.size(); i++) data[i] = meanMaxPower[i];
|
|
emit dataChanged();
|
|
}
|
|
|
|
// set the intervals to search for bests
|
|
void
|
|
PDModel::setIntervals(double sanI1, double sanI2, double anI1, double anI2,
|
|
double aeI1, double aeI2, double laeI1, double laeI2)
|
|
{
|
|
this->sanI1 = sanI1;
|
|
this->sanI2 = sanI2;
|
|
this->anI1 = anI1;
|
|
this->anI2 = anI2;
|
|
this->aeI1 = aeI1;
|
|
this->aeI2 = aeI2;
|
|
this->laeI1 = laeI1;
|
|
this->laeI2 = laeI2;
|
|
|
|
emit intervalsChanged();
|
|
}
|
|
|
|
// using the data and intervals from above, derive the
|
|
// cp, tau and t0 values needed for the model
|
|
// this is the function originally found in CPPlot
|
|
void
|
|
PDModel::deriveCPParameters(bool three)
|
|
{
|
|
// bounds on anaerobic interval in minutes
|
|
const double t1 = anI1;
|
|
const double t2 = anI2;
|
|
|
|
// bounds on aerobic interval in minutes
|
|
const double t3 = aeI1;
|
|
const double t4 = aeI2;
|
|
|
|
// bounds of these time valus in the data
|
|
int i1, i2, i3, i4;
|
|
|
|
// find the indexes associated with the bounds
|
|
// the first point must be at least the minimum for the anaerobic interval, or quit
|
|
for (i1 = 0; i1 < t1; i1++)
|
|
if (i1 + 1 > data.size())
|
|
return;
|
|
// the second point is the maximum point suitable for anaerobicly dominated efforts.
|
|
for (i2 = i1; i2 + 1 <= t2; i2++)
|
|
if (i2 + 1 > data.size())
|
|
return;
|
|
// the third point is the beginning of the minimum duration for aerobic efforts
|
|
for (i3 = i2; i3 < t3; i3++)
|
|
if (i3 + 1 > data.size())
|
|
return;
|
|
for (i4 = i3; i4 + 1 <= t4; i4++)
|
|
if (i4 + 1 > data.size())
|
|
break;
|
|
|
|
// initial estimate of tau
|
|
if (tau == 0) tau = 1;
|
|
|
|
// initial estimate of cp (if not already available)
|
|
if (cp == 0) cp = 300;
|
|
|
|
// initial estimate of t0: start small to maximize sensitivity to data
|
|
t0 = 0;
|
|
|
|
// lower bound on tau
|
|
const double tau_min = 0.5;
|
|
|
|
// convergence delta for tau
|
|
const double tau_delta_max = 1e-4;
|
|
const double t0_delta_max = 1e-4;
|
|
|
|
// previous loop value of tau and t0
|
|
double tau_prev;
|
|
double t0_prev;
|
|
|
|
// maximum number of loops
|
|
const int max_loops = 100;
|
|
|
|
// loop to convergence
|
|
int iteration = 0;
|
|
do {
|
|
|
|
// bounds check, don't go on for ever
|
|
if (iteration++ > max_loops) break;
|
|
|
|
// record the previous version of tau, for convergence
|
|
tau_prev = tau;
|
|
t0_prev = t0;
|
|
|
|
// estimate cp, given tau
|
|
int i;
|
|
cp = 0;
|
|
for (i = i3; i < i4; i++) {
|
|
double cpn = data[i] / (1 + tau / (t0 + i / 60.0));
|
|
if (cp < cpn)
|
|
cp = cpn;
|
|
}
|
|
|
|
// if cp = 0; no valid data; give up
|
|
if (cp == 0.0)
|
|
return;
|
|
|
|
// estimate tau, given cp
|
|
tau = tau_min;
|
|
for (i = i1; i <= i2; i++) {
|
|
double taun = (data[i] / cp - 1) * (i / 60.0 + t0) - t0;
|
|
if (tau < taun)
|
|
tau = taun;
|
|
}
|
|
|
|
// estimate t0 - but only for veloclinic/3parm cp
|
|
if (three) t0 = tau / (data[1] / cp - 1) - 1 / 60.0;
|
|
|
|
} while ((fabs(tau - tau_prev) > tau_delta_max) || (fabs(t0 - t0_prev) > t0_delta_max));
|
|
}
|
|
|
|
//
|
|
// Classic 2 Parameter Model
|
|
//
|
|
|
|
CP2Model::CP2Model(Context *context) :
|
|
PDModel(context)
|
|
{
|
|
// set default intervals to search CP 2-20
|
|
anI1=100;
|
|
anI2=120;
|
|
aeI1=1000;
|
|
aeI2=1200;
|
|
|
|
connect (this, SIGNAL(dataChanged()), this, SLOT(onDataChanged()));
|
|
connect (this, SIGNAL(intervalsChanged()), this, SLOT(onIntervalsChanged()));
|
|
}
|
|
|
|
// P(t) - return y for t in 2 parameter model
|
|
double
|
|
CP2Model::y(double t) const
|
|
{
|
|
// classic model - W' / t + CP
|
|
return (cp * tau * 60) / t + cp;
|
|
}
|
|
|
|
// 2 parameter model can calculate these
|
|
int
|
|
CP2Model::WPrime()
|
|
{
|
|
// kjoules
|
|
return (cp * tau * 60);
|
|
}
|
|
|
|
int
|
|
CP2Model::CP()
|
|
{
|
|
return cp;
|
|
}
|
|
|
|
// could have just connected signal to slot
|
|
// but might want to be more sophisticated in future
|
|
void CP2Model::onDataChanged()
|
|
{
|
|
// calc tau etc and make sure the interval is
|
|
// set corretly - i.e. 'domain of validity'
|
|
deriveCPParameters();
|
|
setInterval(QwtInterval(tau, PDMODEL_MAXT));
|
|
|
|
}
|
|
|
|
void CP2Model::onIntervalsChanged()
|
|
{
|
|
deriveCPParameters();
|
|
setInterval(QwtInterval(tau, PDMODEL_MAXT));
|
|
}
|
|
|
|
//
|
|
// Morton 3 Parameter Model
|
|
//
|
|
CP3Model::CP3Model(Context *context) :
|
|
PDModel(context)
|
|
{
|
|
// set default intervals to search CP 30-60
|
|
anI1=1800;
|
|
anI2=2400;
|
|
aeI1=2400;
|
|
aeI2=3600;
|
|
|
|
connect (this, SIGNAL(dataChanged()), this, SLOT(onDataChanged()));
|
|
connect (this, SIGNAL(intervalsChanged()), this, SLOT(onIntervalsChanged()));
|
|
}
|
|
|
|
// P(t) - return y for t in 2 parameter model
|
|
double
|
|
CP3Model::y(double t) const
|
|
{
|
|
// classic model - W' / t + CP
|
|
return cp * (double(1.00f)+tau /(((double(t)/double(60))+t0)));
|
|
}
|
|
|
|
// 2 parameter model can calculate these
|
|
int
|
|
CP3Model::WPrime()
|
|
{
|
|
// kjoules
|
|
return (cp * tau * 60);
|
|
}
|
|
|
|
int
|
|
CP3Model::CP()
|
|
{
|
|
return cp;
|
|
}
|
|
|
|
int
|
|
CP3Model::PMax()
|
|
{
|
|
// casting to double across to ensure we don't lose precision
|
|
// but basically its the max value of the curve at time t of 1s
|
|
// which is cp * 1 + tau / ((t/60) + t0)
|
|
return cp * (double(1.00f)+tau /(((double(1)/double(60))+t0)));
|
|
}
|
|
|
|
|
|
// could have just connected signal to slot
|
|
// but might want to be more sophisticated in future
|
|
void CP3Model::onDataChanged()
|
|
{
|
|
// calc tau etc and make sure the interval is
|
|
// set corretly - i.e. 'domain of validity'
|
|
deriveCPParameters(true);
|
|
setInterval(QwtInterval(tau, PDMODEL_MAXT));
|
|
|
|
}
|
|
|
|
void CP3Model::onIntervalsChanged()
|
|
{
|
|
deriveCPParameters(true);
|
|
setInterval(QwtInterval(tau, PDMODEL_MAXT));
|
|
}
|
|
|
|
//
|
|
// Veloclinic Multicomponent Model
|
|
//
|
|
// p(t) = pc1 + pc2
|
|
// Power at time t is the sum of;
|
|
// pc1 - the power from component 1 (fast twitch pools)
|
|
// pc2 - the power from component 2 (slow twitch motor units)
|
|
//
|
|
// The inputs are derived from the CP2-20 model and 3 constants:
|
|
//
|
|
// Pmax - as derived from the CP2-20 model (via t0)
|
|
// w1 - W' as derived from the CP2-20 model
|
|
// p1 - pmax - cp as derived from the CP2-20 model
|
|
// p2 - cp as derived from the CP2-20 model
|
|
// tau1 - W'1 / p1
|
|
// tau2 - 15,000
|
|
// w2 - A slow twitch W' derived from p2 * tau2
|
|
// alpha- 0.1 thru -0.1, we default to zero
|
|
// beta - 1.0
|
|
//
|
|
// Fast twitch component is:
|
|
// pc1(t) = W'1 / t * (1-exp(-t/tau1)) * ((1-exp(-t/10)) ^ (1/alpha))
|
|
//
|
|
// Slow twitch component has three formulations:
|
|
// sprint capped linear) pc2(t) = p2 * tau2 * (1-exp(-t/tau2))
|
|
// sprint capped regeneration) pc2(t) = p2 / (1 + t/tau2)
|
|
// sprint capped exponential) pc2(t) = p2 / (1 + t/5400) ^ (1/beta)
|
|
//
|
|
// Currently deciding which of the three formulations to use
|
|
// as the base for GoldenCheetah (we have enough models already !)
|
|
MultiModel::MultiModel(Context *context) :
|
|
PDModel(context)
|
|
{
|
|
// set default intervals to search CP 30-60
|
|
// uses the same as the 3 parameter model
|
|
anI1=1800;
|
|
anI2=2400;
|
|
aeI1=2400;
|
|
aeI2=3600;
|
|
|
|
variant = 0; // use exp top/bottom by default.
|
|
|
|
connect (this, SIGNAL(dataChanged()), this, SLOT(onDataChanged()));
|
|
connect (this, SIGNAL(intervalsChanged()), this, SLOT(onIntervalsChanged()));
|
|
}
|
|
|
|
void
|
|
MultiModel::setVariant(int variant)
|
|
{
|
|
this->variant = variant;
|
|
emit intervalsChanged(); // refresh then
|
|
}
|
|
|
|
|
|
// P(t) - return y for t in 2 parameter model
|
|
double
|
|
MultiModel::y(double t) const
|
|
{
|
|
// two component model
|
|
double pc1 = w1 / t * (1.00f - exp(-t/tau1)) * pow(1-exp(-t/10), alpha);
|
|
|
|
// which variant for pc2 ?
|
|
double pc2 = 0.0f;
|
|
switch (variant) {
|
|
|
|
default:
|
|
case 0 : // exponential top and bottom
|
|
pc2 = p2 * tau2 / t * (1-exp(-t/tau2));
|
|
break;
|
|
|
|
case 1 : // linear feedback
|
|
pc2 = p2 / (1+t/tau2);
|
|
break;
|
|
|
|
case 2 : // regeneration
|
|
pc2 = pow(p2 / (1+t/5400),1/beta);
|
|
//pc2 = p2 / pow((1+t/5400),(1/beta));
|
|
break;
|
|
|
|
}
|
|
|
|
return pc1 + pc2;
|
|
}
|
|
|
|
int
|
|
MultiModel::FTP()
|
|
{
|
|
if (data.size()) return y(3600);
|
|
return 0;
|
|
}
|
|
|
|
// 2 parameter model can calculate these
|
|
int
|
|
MultiModel::WPrime()
|
|
{
|
|
// kjoules -- add in difference between CP60 from
|
|
// velo model and cp as derived
|
|
return w1;
|
|
}
|
|
|
|
int
|
|
MultiModel::CP()
|
|
{
|
|
if (data.size()) return y(3600);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
MultiModel::PMax()
|
|
{
|
|
// casting to double across to ensure we don't lose precision
|
|
// but basically its the max value of the curve at time t of 1s
|
|
// which is cp * 1 + tau / ((t/60) + t0)
|
|
return cp * (double(1.00f)+tau /(((double(1)/double(60))+t0)));
|
|
}
|
|
|
|
|
|
// could have just connected signal to slot
|
|
// but might want to be more sophisticated in future
|
|
void MultiModel::onDataChanged()
|
|
{
|
|
// calc tau etc and make sure the interval is
|
|
// set corretly - i.e. 'domain of validity'
|
|
deriveCPParameters(true);
|
|
|
|
// and veloclinic paramters too;
|
|
w1 = cp*tau*60; // initial estimate from classic cp model
|
|
p1 = PMax() - cp;
|
|
p2 = cp;
|
|
tau1 = w1 / p1;
|
|
tau2 = 15000;
|
|
alpha = 0.0f;
|
|
beta = 1.0;
|
|
|
|
// now account for model -- this is rather problematic
|
|
// since the formula uses cp/w' as derived via CP220 but
|
|
// the resulting W' is higher.
|
|
w1 = (cp + (cp-CP())) * tau * 60;
|
|
|
|
setInterval(QwtInterval(tau, PDMODEL_MAXT));
|
|
}
|
|
|
|
void MultiModel::onIntervalsChanged()
|
|
{
|
|
deriveCPParameters(true);
|
|
|
|
// and veloclinic paramters too;
|
|
w1 = cp*tau*60; // initial estimate from classic model
|
|
p1 = PMax() - cp;
|
|
p2 = cp;
|
|
tau1 = w1 / p1;
|
|
tau2 = 15000;
|
|
alpha = 0.0f;
|
|
beta = 1.0;
|
|
|
|
// now account for model -- this is rather problematic
|
|
// since the formula uses cp/w' as derived via CP220 but
|
|
// the resulting W' is higher.
|
|
w1 = (cp + (cp-CP())) * tau * 60;
|
|
|
|
|
|
setInterval(QwtInterval(tau, PDMODEL_MAXT));
|
|
}
|