Files
2023-08-24 17:49:47 -05:00

453 lines
16 KiB
Python

"""
This modules provides a conversion to / from a ragged (or "jagged") array
representation of the geometries.
A ragged array is an irregular array of arrays of which each element can have
a different length. As a result, such an array cannot be represented as a
standard, rectangular nD array.
The coordinates of geometries can be represented as arrays of arrays of
coordinate pairs (possibly multiple levels of nesting, depending on the
geometry type).
Geometries, as a ragged array of coordinates, can be efficiently represented
as contiguous arrays of coordinates provided that there is another data
structure that keeps track of which range of coordinate values corresponds
to a given geometry. This can be done using offsets, counts, or indices.
This module currently implements offsets into the coordinates array. This
is the ragged array representation defined by the the Apache Arrow project
as "variable size list array" (https://arrow.apache.org/docs/format/Columnar.html#variable-size-list-layout).
See for example https://cfconventions.org/Data/cf-conventions/cf-conventions-1.9/cf-conventions.html#representations-features
for different options.
The exact usage of the Arrow list array with varying degrees of nesting for the
different geometry types is defined by the GeoArrow project:
https://github.com/geoarrow/geoarrow
"""
import numpy as np
from . import creation
from ._geometry import (
GeometryType,
get_coordinate_dimension,
get_parts,
get_rings,
get_type_id,
)
from .coordinates import get_coordinates
from .predicates import is_empty
__all__ = ["to_ragged_array", "from_ragged_array"]
# # GEOS -> coords/offset arrays (to_ragged_array)
def _get_arrays_point(arr, include_z):
# only one array of coordinates
coords = get_coordinates(arr, include_z=include_z)
# empty points are represented by NaNs
empties = is_empty(arr)
if empties.any():
indices = np.nonzero(empties)[0]
indices = indices - np.arange(len(indices))
coords = np.insert(coords, indices, np.nan, axis=0)
return coords, ()
def _indices_to_offsets(indices, n):
offsets = np.insert(np.bincount(indices).cumsum(), 0, 0)
if len(offsets) != n + 1:
# last geometries might be empty or missing
offsets = np.pad(
offsets,
(0, n + 1 - len(offsets)),
"constant",
constant_values=offsets[-1],
)
return offsets
def _get_arrays_multipoint(arr, include_z):
# explode/flatten the MultiPoints
_, part_indices = get_parts(arr, return_index=True)
# the offsets into the multipoint parts
offsets = _indices_to_offsets(part_indices, len(arr))
# only one array of coordinates
coords = get_coordinates(arr, include_z=include_z)
return coords, (offsets,)
def _get_arrays_linestring(arr, include_z):
# the coords and offsets into the coordinates of the linestrings
coords, indices = get_coordinates(arr, return_index=True, include_z=include_z)
offsets = _indices_to_offsets(indices, len(arr))
return coords, (offsets,)
def _get_arrays_multilinestring(arr, include_z):
# explode/flatten the MultiLineStrings
arr_flat, part_indices = get_parts(arr, return_index=True)
# the offsets into the multilinestring parts
offsets2 = _indices_to_offsets(part_indices, len(arr))
# the coords and offsets into the coordinates of the linestrings
coords, indices = get_coordinates(arr_flat, return_index=True, include_z=include_z)
offsets1 = np.insert(np.bincount(indices).cumsum(), 0, 0)
return coords, (offsets1, offsets2)
def _get_arrays_polygon(arr, include_z):
# explode/flatten the Polygons into Rings
arr_flat, ring_indices = get_rings(arr, return_index=True)
# the offsets into the exterior/interior rings of the multipolygon parts
offsets2 = _indices_to_offsets(ring_indices, len(arr))
# the coords and offsets into the coordinates of the rings
coords, indices = get_coordinates(arr_flat, return_index=True, include_z=include_z)
offsets1 = np.insert(np.bincount(indices).cumsum(), 0, 0)
return coords, (offsets1, offsets2)
def _get_arrays_multipolygon(arr, include_z):
# explode/flatten the MultiPolygons
arr_flat, part_indices = get_parts(arr, return_index=True)
# the offsets into the multipolygon parts
offsets3 = _indices_to_offsets(part_indices, len(arr))
# explode/flatten the Polygons into Rings
arr_flat2, ring_indices = get_rings(arr_flat, return_index=True)
# the offsets into the exterior/interior rings of the multipolygon parts
offsets2 = np.insert(np.bincount(ring_indices).cumsum(), 0, 0)
# the coords and offsets into the coordinates of the rings
coords, indices = get_coordinates(arr_flat2, return_index=True, include_z=include_z)
offsets1 = np.insert(np.bincount(indices).cumsum(), 0, 0)
return coords, (offsets1, offsets2, offsets3)
def to_ragged_array(geometries, include_z=None):
"""
Converts geometries to a ragged array representation using a contiguous
array of coordinates and offset arrays.
This function converts an array of geometries to a ragged array
(i.e. irregular array of arrays) of coordinates, represented in memory
using a single contiguous array of the coordinates, and
up to 3 offset arrays that keep track where each sub-array
starts and ends.
This follows the in-memory layout of the variable size list arrays defined
by Apache Arrow, as specified for geometries by the GeoArrow project:
https://github.com/geoarrow/geoarrow.
Parameters
----------
geometries : array_like
Array of geometries (1-dimensional).
include_z : bool, default None
If False, return 2D geometries. If True, include the third dimension
in the output (if a geometry has no third dimension, the z-coordinates
will be NaN). By default, will infer the dimensionality from the
input geometries. Note that this inference can be unreliable with
empty geometries (for a guaranteed result, it is recommended to
specify the keyword).
Returns
-------
tuple of (geometry_type, coords, offsets)
geometry_type : GeometryType
The type of the input geometries (required information for
roundtrip).
coords : np.ndarray
Contiguous array of shape (n, 2) or (n, 3) of all coordinates
of all input geometries.
offsets: tuple of np.ndarray
Offset arrays that make it possible to reconstruct the
geometries from the flat coordinates array. The number of
offset arrays depends on the geometry type. See
https://github.com/geoarrow/geoarrow/blob/main/format.md
for details.
Notes
-----
Mixed singular and multi geometry types of the same basic type are
allowed (e.g., Point and MultiPoint) and all singular types will be
treated as multi types.
GeometryCollections and other mixed geometry types are not supported.
See also
--------
from_ragged_array
Examples
--------
Consider a Polygon with one hole (interior ring):
>>> import shapely
>>> polygon = shapely.Polygon(
... [(0, 0), (10, 0), (10, 10), (0, 10)],
... holes=[[(2, 2), (3, 2), (2, 3)]]
... )
>>> polygon
<POLYGON ((0 0, 10 0, 10 10, 0 10, 0 0), (2 2, 3 2, 2 3, 2 2))>
This polygon can be thought of as a list of rings (first ring is the
exterior ring, subsequent rings are the interior rings), and each ring
as a list of coordinate pairs. This is very similar to how GeoJSON
represents the coordinates:
>>> import json
>>> json.loads(shapely.to_geojson(polygon))["coordinates"]
[[[0.0, 0.0], [10.0, 0.0], [10.0, 10.0], [0.0, 10.0], [0.0, 0.0]],
[[2.0, 2.0], [3.0, 2.0], [2.0, 3.0], [2.0, 2.0]]]
This function will return a similar list of lists of lists, but
using a single contiguous array of coordinates, and multiple arrays of
offsets:
>>> geometry_type, coords, offsets = shapely.to_ragged_array([polygon])
>>> geometry_type
<GeometryType.POLYGON: 3>
>>> coords
array([[ 0., 0.],
[10., 0.],
[10., 10.],
[ 0., 10.],
[ 0., 0.],
[ 2., 2.],
[ 3., 2.],
[ 2., 3.],
[ 2., 2.]])
>>> offsets
(array([0, 5, 9]), array([0, 2]))
As an example how to interpret the offsets: the i-th ring in the
coordinates is represented by ``offsets[0][i]`` to ``offsets[0][i+1]``:
>>> exterior_ring_start, exterior_ring_end = offsets[0][0], offsets[0][1]
>>> coords[exterior_ring_start:exterior_ring_end]
array([[ 0., 0.],
[10., 0.],
[10., 10.],
[ 0., 10.],
[ 0., 0.]])
"""
geometries = np.asarray(geometries)
if include_z is None:
include_z = np.any(
get_coordinate_dimension(geometries[~is_empty(geometries)]) == 3
)
geom_types = np.unique(get_type_id(geometries))
# ignore missing values (type of -1)
geom_types = geom_types[geom_types >= 0]
if len(geom_types) == 1:
typ = GeometryType(geom_types[0])
if typ == GeometryType.POINT:
coords, offsets = _get_arrays_point(geometries, include_z)
elif typ == GeometryType.LINESTRING:
coords, offsets = _get_arrays_linestring(geometries, include_z)
elif typ == GeometryType.POLYGON:
coords, offsets = _get_arrays_polygon(geometries, include_z)
elif typ == GeometryType.MULTIPOINT:
coords, offsets = _get_arrays_multipoint(geometries, include_z)
elif typ == GeometryType.MULTILINESTRING:
coords, offsets = _get_arrays_multilinestring(geometries, include_z)
elif typ == GeometryType.MULTIPOLYGON:
coords, offsets = _get_arrays_multipolygon(geometries, include_z)
else:
raise ValueError(f"Geometry type {typ.name} is not supported")
elif len(geom_types) == 2:
if set(geom_types) == {GeometryType.POINT, GeometryType.MULTIPOINT}:
typ = GeometryType.MULTIPOINT
coords, offsets = _get_arrays_multipoint(geometries, include_z)
elif set(geom_types) == {GeometryType.LINESTRING, GeometryType.MULTILINESTRING}:
typ = GeometryType.MULTILINESTRING
coords, offsets = _get_arrays_multilinestring(geometries, include_z)
elif set(geom_types) == {GeometryType.POLYGON, GeometryType.MULTIPOLYGON}:
typ = GeometryType.MULTIPOLYGON
coords, offsets = _get_arrays_multipolygon(geometries, include_z)
else:
raise ValueError(
"Geometry type combination is not supported "
f"({[GeometryType(t).name for t in geom_types]})"
)
else:
raise ValueError(
"Geometry type combination is not supported "
f"({[GeometryType(t).name for t in geom_types]})"
)
return typ, coords, offsets
# # coords/offset arrays -> GEOS (from_ragged_array)
def _point_from_flatcoords(coords):
result = creation.points(coords)
# Older versions of GEOS (<= 3.9) don't automatically convert NaNs
# to empty points -> do manually
empties = np.isnan(coords).all(axis=1)
if empties.any():
result[empties] = creation.empty(1, geom_type=GeometryType.POINT).item()
return result
def _multipoint_from_flatcoords(coords, offsets):
# recreate points
points = creation.points(coords)
# recreate multipoints
multipoint_parts = np.diff(offsets)
multipoint_indices = np.repeat(np.arange(len(multipoint_parts)), multipoint_parts)
result = np.empty(len(offsets) - 1, dtype=object)
result = creation.multipoints(points, indices=multipoint_indices, out=result)
result[multipoint_parts == 0] = creation.empty(
1, geom_type=GeometryType.MULTIPOINT
).item()
return result
def _linestring_from_flatcoords(coords, offsets):
# recreate linestrings
linestring_n = np.diff(offsets)
linestring_indices = np.repeat(np.arange(len(linestring_n)), linestring_n)
result = np.empty(len(offsets) - 1, dtype=object)
result = creation.linestrings(coords, indices=linestring_indices, out=result)
result[linestring_n == 0] = creation.empty(
1, geom_type=GeometryType.LINESTRING
).item()
return result
def _multilinestrings_from_flatcoords(coords, offsets1, offsets2):
# recreate linestrings
linestrings = _linestring_from_flatcoords(coords, offsets1)
# recreate multilinestrings
multilinestring_parts = np.diff(offsets2)
multilinestring_indices = np.repeat(
np.arange(len(multilinestring_parts)), multilinestring_parts
)
result = np.empty(len(offsets2) - 1, dtype=object)
result = creation.multilinestrings(
linestrings, indices=multilinestring_indices, out=result
)
result[multilinestring_parts == 0] = creation.empty(
1, geom_type=GeometryType.MULTILINESTRING
).item()
return result
def _polygon_from_flatcoords(coords, offsets1, offsets2):
# recreate rings
ring_lengths = np.diff(offsets1)
ring_indices = np.repeat(np.arange(len(ring_lengths)), ring_lengths)
rings = creation.linearrings(coords, indices=ring_indices)
# recreate polygons
polygon_rings_n = np.diff(offsets2)
polygon_indices = np.repeat(np.arange(len(polygon_rings_n)), polygon_rings_n)
result = np.empty(len(offsets2) - 1, dtype=object)
result = creation.polygons(rings, indices=polygon_indices, out=result)
result[polygon_rings_n == 0] = creation.empty(
1, geom_type=GeometryType.POLYGON
).item()
return result
def _multipolygons_from_flatcoords(coords, offsets1, offsets2, offsets3):
# recreate polygons
polygons = _polygon_from_flatcoords(coords, offsets1, offsets2)
# recreate multipolygons
multipolygon_parts = np.diff(offsets3)
multipolygon_indices = np.repeat(
np.arange(len(multipolygon_parts)), multipolygon_parts
)
result = np.empty(len(offsets3) - 1, dtype=object)
result = creation.multipolygons(polygons, indices=multipolygon_indices, out=result)
result[multipolygon_parts == 0] = creation.empty(
1, geom_type=GeometryType.MULTIPOLYGON
).item()
return result
def from_ragged_array(geometry_type, coords, offsets=None):
"""
Creates geometries from a contiguous array of coordinates
and offset arrays.
This function creates geometries from the ragged array representation
as returned by ``to_ragged_array``.
This follows the in-memory layout of the variable size list arrays defined
by Apache Arrow, as specified for geometries by the GeoArrow project:
https://github.com/geoarrow/geoarrow.
See :func:`to_ragged_array` for more details.
Parameters
----------
geometry_type : GeometryType
The type of geometry to create.
coords : np.ndarray
Contiguous array of shape (n, 2) or (n, 3) of all coordinates
for the geometries.
offsets: tuple of np.ndarray
Offset arrays that allow to reconstruct the geometries based on the
flat coordinates array. The number of offset arrays depends on the
geometry type. See
https://github.com/geoarrow/geoarrow/blob/main/format.md for details.
Returns
-------
np.ndarray
Array of geometries (1-dimensional).
See Also
--------
to_ragged_array
"""
if geometry_type == GeometryType.POINT:
assert offsets is None or len(offsets) == 0
return _point_from_flatcoords(coords)
if geometry_type == GeometryType.LINESTRING:
return _linestring_from_flatcoords(coords, *offsets)
if geometry_type == GeometryType.POLYGON:
return _polygon_from_flatcoords(coords, *offsets)
elif geometry_type == GeometryType.MULTIPOINT:
return _multipoint_from_flatcoords(coords, *offsets)
elif geometry_type == GeometryType.MULTILINESTRING:
return _multilinestrings_from_flatcoords(coords, *offsets)
elif geometry_type == GeometryType.MULTIPOLYGON:
return _multipolygons_from_flatcoords(coords, *offsets)
else:
raise ValueError(f"Geometry type {geometry_type.name} is not supported")