Added Evaluation, Preprocessing, Training, Transformation folders. Preprocessing is just a rework of the folder for the new structure of the old preprocessing folder. Training and Transformation are the old project file broken up into two parts and restructured. Evaluation is for evaluating the predictive power of the model.
312 lines
17 KiB
Python
312 lines
17 KiB
Python
import numpy as np
|
|
|
|
from keras import backend as K
|
|
from keras import activations
|
|
from keras.layers import Recurrent
|
|
from keras.layers import Conv2D, UpSampling2D, MaxPooling2D
|
|
from keras.engine import InputSpec
|
|
from keras_utils import legacy_prednet_support
|
|
|
|
class PredNet(Recurrent):
|
|
'''PredNet architecture - Lotter 2016.
|
|
Stacked convolutional LSTM inspired by predictive coding principles.
|
|
|
|
# Arguments
|
|
stack_sizes: number of channels in targets (A) and predictions (Ahat) in each layer of the architecture.
|
|
Length is the number of layers in the architecture.
|
|
First element is the number of channels in the input.
|
|
Ex. (3, 16, 32) would correspond to a 3 layer architecture that takes in RGB images and has 16 and 32
|
|
channels in the second and third layers, respectively.
|
|
R_stack_sizes: number of channels in the representation (R) modules.
|
|
Length must equal length of stack_sizes, but the number of channels per layer can be different.
|
|
A_filt_sizes: filter sizes for the target (A) modules.
|
|
Has length of 1 - len(stack_sizes).
|
|
Ex. (3, 3) would mean that targets for layers 2 and 3 are computed by a 3x3 convolution of the errors (E)
|
|
from the layer below (followed by max-pooling)
|
|
Ahat_filt_sizes: filter sizes for the prediction (Ahat) modules.
|
|
Has length equal to length of stack_sizes.
|
|
Ex. (3, 3, 3) would mean that the predictions for each layer are computed by a 3x3 convolution of the
|
|
representation (R) modules at each layer.
|
|
R_filt_sizes: filter sizes for the representation (R) modules.
|
|
Has length equal to length of stack_sizes.
|
|
Corresponds to the filter sizes for all convolutions in the LSTM.
|
|
pixel_max: the maximum pixel value.
|
|
Used to clip the pixel-layer prediction.
|
|
error_activation: activation function for the error (E) units.
|
|
A_activation: activation function for the target (A) and prediction (A_hat) units.
|
|
LSTM_activation: activation function for the cell and hidden states of the LSTM.
|
|
LSTM_inner_activation: activation function for the gates in the LSTM.
|
|
output_mode: either 'error', 'prediction', 'all' or layer specification (ex. R2, see below).
|
|
Controls what is outputted by the PredNet.
|
|
If 'error', the mean response of the error (E) units of each layer will be outputted.
|
|
That is, the output shape will be (batch_size, nb_layers).
|
|
If 'prediction', the frame prediction will be outputted.
|
|
If 'all', the output will be the frame prediction concatenated with the mean layer errors.
|
|
The frame prediction is flattened before concatenation.
|
|
Nomenclature of 'all' is kept for backwards compatibility, but should not be confused with returning all of the layers of the model
|
|
For returning the features of a particular layer, output_mode should be of the form unit_type + layer_number.
|
|
For instance, to return the features of the LSTM "representational" units in the lowest layer, output_mode should be specificied as 'R0'.
|
|
The possible unit types are 'R', 'Ahat', 'A', and 'E' corresponding to the 'representation', 'prediction', 'target', and 'error' units respectively.
|
|
extrap_start_time: time step for which model will start extrapolating.
|
|
Starting at this time step, the prediction from the previous time step will be treated as the "actual"
|
|
data_format: 'channels_first' or 'channels_last'.
|
|
It defaults to the `image_data_format` value found in your
|
|
Keras config file at `~/.keras/keras.json`.
|
|
|
|
# References
|
|
- [Deep predictive coding networks for video prediction and unsupervised learning](https://arxiv.org/abs/1605.08104)
|
|
- [Long short-term memory](http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf)
|
|
- [Convolutional LSTM network: a machine learning approach for precipitation nowcasting](http://arxiv.org/abs/1506.04214)
|
|
- [Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects](http://www.nature.com/neuro/journal/v2/n1/pdf/nn0199_79.pdf)
|
|
'''
|
|
@legacy_prednet_support
|
|
def __init__(self, stack_sizes, R_stack_sizes,
|
|
A_filt_sizes, Ahat_filt_sizes, R_filt_sizes,
|
|
pixel_max=1., error_activation='relu', A_activation='relu',
|
|
LSTM_activation='tanh', LSTM_inner_activation='hard_sigmoid',
|
|
output_mode='error', extrap_start_time=None,
|
|
data_format=K.image_data_format(), **kwargs):
|
|
self.stack_sizes = stack_sizes
|
|
self.nb_layers = len(stack_sizes)
|
|
assert len(R_stack_sizes) == self.nb_layers, 'len(R_stack_sizes) must equal len(stack_sizes)'
|
|
self.R_stack_sizes = R_stack_sizes
|
|
assert len(A_filt_sizes) == (self.nb_layers - 1), 'len(A_filt_sizes) must equal len(stack_sizes) - 1'
|
|
self.A_filt_sizes = A_filt_sizes
|
|
assert len(Ahat_filt_sizes) == self.nb_layers, 'len(Ahat_filt_sizes) must equal len(stack_sizes)'
|
|
self.Ahat_filt_sizes = Ahat_filt_sizes
|
|
assert len(R_filt_sizes) == (self.nb_layers), 'len(R_filt_sizes) must equal len(stack_sizes)'
|
|
self.R_filt_sizes = R_filt_sizes
|
|
|
|
self.pixel_max = pixel_max
|
|
self.error_activation = activations.get(error_activation)
|
|
self.A_activation = activations.get(A_activation)
|
|
self.LSTM_activation = activations.get(LSTM_activation)
|
|
self.LSTM_inner_activation = activations.get(LSTM_inner_activation)
|
|
|
|
default_output_modes = ['prediction', 'error', 'all']
|
|
layer_output_modes = [layer + str(n) for n in range(self.nb_layers) for layer in ['R', 'E', 'A', 'Ahat']]
|
|
assert output_mode in default_output_modes + layer_output_modes, 'Invalid output_mode: ' + str(output_mode)
|
|
self.output_mode = output_mode
|
|
if self.output_mode in layer_output_modes:
|
|
self.output_layer_type = self.output_mode[:-1]
|
|
self.output_layer_num = int(self.output_mode[-1])
|
|
else:
|
|
self.output_layer_type = None
|
|
self.output_layer_num = None
|
|
self.extrap_start_time = extrap_start_time
|
|
|
|
assert data_format in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}'
|
|
self.data_format = data_format
|
|
self.channel_axis = -3 if data_format == 'channels_first' else -1
|
|
self.row_axis = -2 if data_format == 'channels_first' else -3
|
|
self.column_axis = -1 if data_format == 'channels_first' else -2
|
|
super(PredNet, self).__init__(**kwargs)
|
|
self.input_spec = [InputSpec(ndim=5)]
|
|
|
|
def compute_output_shape(self, input_shape):
|
|
if self.output_mode == 'prediction':
|
|
out_shape = input_shape[2:]
|
|
elif self.output_mode == 'error':
|
|
out_shape = (self.nb_layers,)
|
|
elif self.output_mode == 'all':
|
|
out_shape = (np.prod(input_shape[2:]) + self.nb_layers,)
|
|
else:
|
|
stack_str = 'R_stack_sizes' if self.output_layer_type == 'R' else 'stack_sizes'
|
|
stack_mult = 2 if self.output_layer_type == 'E' else 1
|
|
out_stack_size = stack_mult * getattr(self, stack_str)[self.output_layer_num]
|
|
out_nb_row = input_shape[self.row_axis] / 2**self.output_layer_num
|
|
out_nb_col = input_shape[self.column_axis] / 2**self.output_layer_num
|
|
if self.data_format == 'channels_first':
|
|
out_shape = (out_stack_size, out_nb_row, out_nb_col)
|
|
else:
|
|
out_shape = (out_nb_row, out_nb_col, out_stack_size)
|
|
|
|
if self.return_sequences:
|
|
return (input_shape[0], input_shape[1]) + out_shape
|
|
else:
|
|
return (input_shape[0],) + out_shape
|
|
|
|
def get_initial_state(self, x):
|
|
input_shape = self.input_spec[0].shape
|
|
init_nb_row = input_shape[self.row_axis]
|
|
init_nb_col = input_shape[self.column_axis]
|
|
|
|
base_initial_state = K.zeros_like(x) # (samples, timesteps) + image_shape
|
|
non_channel_axis = -1 if self.data_format == 'channels_first' else -2
|
|
for _ in range(2):
|
|
base_initial_state = K.sum(base_initial_state, axis=non_channel_axis)
|
|
base_initial_state = K.sum(base_initial_state, axis=1) # (samples, nb_channels)
|
|
|
|
initial_states = []
|
|
states_to_pass = ['r', 'c', 'e']
|
|
nlayers_to_pass = {u: self.nb_layers for u in states_to_pass}
|
|
if self.extrap_start_time is not None:
|
|
states_to_pass.append('ahat') # pass prediction in states so can use as actual for t+1 when extrapolating
|
|
nlayers_to_pass['ahat'] = 1
|
|
for u in states_to_pass:
|
|
for l in range(nlayers_to_pass[u]):
|
|
ds_factor = 2 ** l
|
|
nb_row = init_nb_row // ds_factor
|
|
nb_col = init_nb_col // ds_factor
|
|
if u in ['r', 'c']:
|
|
stack_size = self.R_stack_sizes[l]
|
|
elif u == 'e':
|
|
stack_size = 2 * self.stack_sizes[l]
|
|
elif u == 'ahat':
|
|
stack_size = self.stack_sizes[l]
|
|
output_size = stack_size * nb_row * nb_col # flattened size
|
|
|
|
reducer = K.zeros((input_shape[self.channel_axis], output_size)) # (nb_channels, output_size)
|
|
initial_state = K.dot(base_initial_state, reducer) # (samples, output_size)
|
|
if self.data_format == 'channels_first':
|
|
output_shp = (-1, stack_size, nb_row, nb_col)
|
|
else:
|
|
output_shp = (-1, nb_row, nb_col, stack_size)
|
|
initial_state = K.reshape(initial_state, output_shp)
|
|
initial_states += [initial_state]
|
|
|
|
if K._BACKEND == 'theano':
|
|
from theano import tensor as T
|
|
# There is a known issue in the Theano scan op when dealing with inputs whose shape is 1 along a dimension.
|
|
# In our case, this is a problem when training on grayscale images, and the below line fixes it.
|
|
initial_states = [T.unbroadcast(init_state, 0, 1) for init_state in initial_states]
|
|
|
|
if self.extrap_start_time is not None:
|
|
initial_states += [K.variable(0, int if K.backend() != 'tensorflow' else 'int32')] # the last state will correspond to the current timestep
|
|
return initial_states
|
|
|
|
def build(self, input_shape):
|
|
self.input_spec = [InputSpec(shape=input_shape)]
|
|
self.conv_layers = {c: [] for c in ['i', 'f', 'c', 'o', 'a', 'ahat']}
|
|
|
|
for l in range(self.nb_layers):
|
|
for c in ['i', 'f', 'c', 'o']:
|
|
act = self.LSTM_activation if c == 'c' else self.LSTM_inner_activation
|
|
self.conv_layers[c].append(Conv2D(self.R_stack_sizes[l], self.R_filt_sizes[l], padding='same', activation=act, data_format=self.data_format))
|
|
|
|
act = 'relu' if l == 0 else self.A_activation
|
|
self.conv_layers['ahat'].append(Conv2D(self.stack_sizes[l], self.Ahat_filt_sizes[l], padding='same', activation=act, data_format=self.data_format))
|
|
|
|
if l < self.nb_layers - 1:
|
|
self.conv_layers['a'].append(Conv2D(self.stack_sizes[l+1], self.A_filt_sizes[l], padding='same', activation=self.A_activation, data_format=self.data_format))
|
|
|
|
self.upsample = UpSampling2D(data_format=self.data_format)
|
|
self.pool = MaxPooling2D(data_format=self.data_format)
|
|
|
|
self.trainable_weights = []
|
|
nb_row, nb_col = (input_shape[-2], input_shape[-1]) if self.data_format == 'channels_first' else (input_shape[-3], input_shape[-2])
|
|
for c in sorted(self.conv_layers.keys()):
|
|
for l in range(len(self.conv_layers[c])):
|
|
ds_factor = 2 ** l
|
|
if c == 'ahat':
|
|
nb_channels = self.R_stack_sizes[l]
|
|
elif c == 'a':
|
|
nb_channels = 2 * self.R_stack_sizes[l]
|
|
else:
|
|
nb_channels = self.stack_sizes[l] * 2 + self.R_stack_sizes[l]
|
|
if l < self.nb_layers - 1:
|
|
nb_channels += self.R_stack_sizes[l+1]
|
|
in_shape = (input_shape[0], nb_channels, nb_row // ds_factor, nb_col // ds_factor)
|
|
if self.data_format == 'channels_last': in_shape = (in_shape[0], in_shape[2], in_shape[3], in_shape[1])
|
|
with K.name_scope('layer_' + c + '_' + str(l)):
|
|
self.conv_layers[c][l].build(in_shape)
|
|
self.trainable_weights += self.conv_layers[c][l].trainable_weights
|
|
|
|
self.states = [None] * self.nb_layers*3
|
|
|
|
if self.extrap_start_time is not None:
|
|
self.t_extrap = K.variable(self.extrap_start_time, int if K.backend() != 'tensorflow' else 'int32')
|
|
self.states += [None] * 2 # [previous frame prediction, timestep]
|
|
|
|
def step(self, a, states):
|
|
r_tm1 = states[:self.nb_layers]
|
|
c_tm1 = states[self.nb_layers:2*self.nb_layers]
|
|
e_tm1 = states[2*self.nb_layers:3*self.nb_layers]
|
|
|
|
if self.extrap_start_time is not None:
|
|
t = states[-1]
|
|
a = K.switch(t >= self.t_extrap, states[-2], a) # if past self.extrap_start_time, the previous prediction will be treated as the actual
|
|
|
|
c = []
|
|
r = []
|
|
e = []
|
|
|
|
# Update R units starting from the top
|
|
for l in reversed(range(self.nb_layers)):
|
|
inputs = [r_tm1[l], e_tm1[l]]
|
|
if l < self.nb_layers - 1:
|
|
inputs.append(r_up)
|
|
|
|
inputs = K.concatenate(inputs, axis=self.channel_axis)
|
|
i = self.conv_layers['i'][l].call(inputs)
|
|
f = self.conv_layers['f'][l].call(inputs)
|
|
o = self.conv_layers['o'][l].call(inputs)
|
|
_c = f * c_tm1[l] + i * self.conv_layers['c'][l].call(inputs)
|
|
_r = o * self.LSTM_activation(_c)
|
|
c.insert(0, _c)
|
|
r.insert(0, _r)
|
|
|
|
if l > 0:
|
|
r_up = self.upsample.call(_r)
|
|
|
|
# Update feedforward path starting from the bottom
|
|
for l in range(self.nb_layers):
|
|
ahat = self.conv_layers['ahat'][l].call(r[l])
|
|
if l == 0:
|
|
ahat = K.minimum(ahat, self.pixel_max)
|
|
frame_prediction = ahat
|
|
|
|
# compute errors
|
|
e_up = self.error_activation(ahat - a)
|
|
e_down = self.error_activation(a - ahat)
|
|
|
|
e.append(K.concatenate((e_up, e_down), axis=self.channel_axis))
|
|
|
|
if self.output_layer_num == l:
|
|
if self.output_layer_type == 'A':
|
|
output = a
|
|
elif self.output_layer_type == 'Ahat':
|
|
output = ahat
|
|
elif self.output_layer_type == 'R':
|
|
output = r[l]
|
|
elif self.output_layer_type == 'E':
|
|
output = e[l]
|
|
|
|
if l < self.nb_layers - 1:
|
|
a = self.conv_layers['a'][l].call(e[l])
|
|
a = self.pool.call(a) # target for next layer
|
|
|
|
if self.output_layer_type is None:
|
|
if self.output_mode == 'prediction':
|
|
output = frame_prediction
|
|
else:
|
|
for l in range(self.nb_layers):
|
|
layer_error = K.mean(K.batch_flatten(e[l]), axis=-1, keepdims=True)
|
|
all_error = layer_error if l == 0 else K.concatenate((all_error, layer_error), axis=-1)
|
|
if self.output_mode == 'error':
|
|
output = all_error
|
|
else:
|
|
output = K.concatenate((K.batch_flatten(frame_prediction), all_error), axis=-1)
|
|
|
|
states = r + c + e
|
|
if self.extrap_start_time is not None:
|
|
states += [frame_prediction, t + 1]
|
|
return output, states
|
|
|
|
def get_config(self):
|
|
config = {'stack_sizes': self.stack_sizes,
|
|
'R_stack_sizes': self.R_stack_sizes,
|
|
'A_filt_sizes': self.A_filt_sizes,
|
|
'Ahat_filt_sizes': self.Ahat_filt_sizes,
|
|
'R_filt_sizes': self.R_filt_sizes,
|
|
'pixel_max': self.pixel_max,
|
|
'error_activation': self.error_activation.__name__,
|
|
'A_activation': self.A_activation.__name__,
|
|
'LSTM_activation': self.LSTM_activation.__name__,
|
|
'LSTM_inner_activation': self.LSTM_inner_activation.__name__,
|
|
'data_format': self.data_format,
|
|
'extrap_start_time': self.extrap_start_time,
|
|
'output_mode': self.output_mode}
|
|
base_config = super(PredNet, self).get_config()
|
|
return dict(list(base_config.items()) + list(config.items()))
|