Files
ThingsBoard/RPI Docker Test/mosquitto.py
2024-10-04 18:53:54 -05:00

2094 lines
79 KiB
Python

# Copyright (c) 2012,2013 Roger Light <roger@atchoo.org>
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# 3. Neither the name of mosquitto nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
#
#
# This product includes software developed by the OpenSSL Project for use in
# the OpenSSL Toolkit. (http://www.openssl.org/)
# This product includes cryptographic software written by Eric Young
# (eay@cryptsoft.com)
# This product includes software written by Tim Hudson (tjh@cryptsoft.com)
"""
This is an MQTT v3.1 client module. MQTT is a lightweight pub/sub messaging
protocol that is easy to implement and suitable for low powered devices.
"""
import errno
import platform
import random
import select
import socket
import ssl
import struct
import sys
import threading
import time
MOSQUITTO_MAJOR=1
MOSQUITTO_MINOR=2
MOSQUITTO_REVISION=90
MOSQUITTO_VERSION_NUMBER=(MOSQUITTO_MAJOR*1000000+MOSQUITTO_MINOR*1000+MOSQUITTO_REVISION)
if platform.system() == 'Windows':
EAGAIN = errno.WSAEWOULDBLOCK
else:
EAGAIN = errno.EAGAIN
if sys.version_info[0] < 3:
PROTOCOL_NAME = "MQIsdp"
else:
PROTOCOL_NAME = b"MQIsdp"
PROTOCOL_VERSION = 3
# Message types
CONNECT = 0x10
CONNACK = 0x20
PUBLISH = 0x30
PUBACK = 0x40
PUBREC = 0x50
PUBREL = 0x60
PUBCOMP = 0x70
SUBSCRIBE = 0x80
SUBACK = 0x90
UNSUBSCRIBE = 0xA0
UNSUBACK = 0xB0
PINGREQ = 0xC0
PINGRESP = 0xD0
DISCONNECT = 0xE0
# Log levels
MOSQ_LOG_INFO = 0x01
MOSQ_LOG_NOTICE = 0x02
MOSQ_LOG_WARNING = 0x04
MOSQ_LOG_ERR = 0x08
MOSQ_LOG_DEBUG = 0x10
# CONNACK codes
CONNACK_ACCEPTED = 0
CONNACK_REFUSED_PROTOCOL_VERSION = 1
CONNACK_REFUSED_IDENTIFIER_REJECTED = 2
CONNACK_REFUSED_SERVER_UNAVAILABLE = 3
CONNACK_REFUSED_BAD_USERNAME_PASSWORD = 4
CONNACK_REFUSED_NOT_AUTHORIZED = 5
# Connection state
mosq_cs_new = 0
mosq_cs_connected = 1
mosq_cs_disconnecting = 2
mosq_cs_connect_async = 3
# Message direction
mosq_md_invalid = 0
mosq_md_in = 1
mosq_md_out = 2
# Message state
mosq_ms_invalid = 0,
mosq_ms_wait_puback = 1
mosq_ms_wait_pubrec = 2
mosq_ms_wait_pubrel = 3
mosq_ms_wait_pubcomp = 4
# Error values
MOSQ_ERR_AGAIN = -1
MOSQ_ERR_SUCCESS = 0
MOSQ_ERR_NOMEM = 1
MOSQ_ERR_PROTOCOL = 2
MOSQ_ERR_INVAL = 3
MOSQ_ERR_NO_CONN = 4
MOSQ_ERR_CONN_REFUSED = 5
MOSQ_ERR_NOT_FOUND = 6
MOSQ_ERR_CONN_LOST = 7
MOSQ_ERR_TLS = 8
MOSQ_ERR_PAYLOAD_SIZE = 9
MOSQ_ERR_NOT_SUPPORTED = 10
MOSQ_ERR_AUTH = 11
MOSQ_ERR_ACL_DENIED = 12
MOSQ_ERR_UNKNOWN = 13
MOSQ_ERR_ERRNO = 14
def error_string(mosq_errno):
"""Return the error string associated with a mosquitto error number."""
if mosq_errno == MOSQ_ERR_SUCCESS:
return "No error."
elif mosq_errno == MOSQ_ERR_NOMEM:
return "Out of memory."
elif mosq_errno == MOSQ_ERR_PROTOCOL:
return "A network protocol error occurred when communicating with the broker."
elif mosq_errno == MOSQ_ERR_INVAL:
return "Invalid function arguments provided."
elif mosq_errno == MOSQ_ERR_NO_CONN:
return "The client is not currently connected."
elif mosq_errno == MOSQ_ERR_CONN_REFUSED:
return "The connection was refused."
elif mosq_errno == MOSQ_ERR_NOT_FOUND:
return "Message not found (internal error)."
elif mosq_errno == MOSQ_ERR_CONN_LOST:
return "The connection was lost."
elif mosq_errno == MOSQ_ERR_TLS:
return "A TLS error occurred."
elif mosq_errno == MOSQ_ERR_PAYLOAD_SIZE:
return "Payload too large."
elif mosq_errno == MOSQ_ERR_NOT_SUPPORTED:
return "This feature is not supported."
elif mosq_errno == MOSQ_ERR_AUTH:
return "Authorisation failed."
elif mosq_errno == MOSQ_ERR_ACL_DENIED:
return "Access denied by ACL."
elif mosq_errno == MOSQ_ERR_UNKNOWN:
return "Unknown error."
elif mosq_errno == MOSQ_ERR_ERRNO:
return "Error defined by errno."
else:
return "Unknown error."
def connack_string(connack_code):
"""Return the string associated with a CONNACK result."""
if connack_code == 0:
return "Connection Accepted."
elif connack_code == 1:
return "Connection Refused: unacceptable protocol version."
elif connack_code == 2:
return "Connection Refused: identifier rejected."
elif connack_code == 3:
return "Connection Refused: broker unavailable."
elif connack_code == 4:
return "Connection Refused: bad user name or password."
elif connack_code == 5:
return "Connection Refused: not authorised."
else:
return "Connection Refused: unknown reason."
def topic_matches_sub(sub, topic):
"""Check whether a topic matches a subscription.
For example:
foo/bar would match the subscription foo/# or +/bar
non/matching would not match the subscription non/+/+
"""
result = True
multilevel_wildcard = False
slen = len(sub)
tlen = len(topic)
spos = 0
tpos = 0
while spos < slen and tpos < tlen:
if sub[spos] == topic[tpos]:
spos += 1
tpos += 1
if tpos == tlen and spos == slen-1 and sub[spos] == '+':
spos += 1
result = True
break
else:
if sub[spos] == '+':
spos += 1
while tpos < tlen and topic[tpos] != '/':
tpos += 1
if tpos == tlen and spos == slen:
result = True
break
elif sub[spos] == '#':
multilevel_wildcard = True
if spos+1 != slen:
result = False
break
else:
result = True
break
else:
result = False
break
if tpos == tlen-1:
# Check for e.g. foo matching foo/#
if spos == slen-3 and sub[spos+1] == '/' and sub[spos+2] == '#':
result = True
multilevel_wildcard = True
break
if not multilevel_wildcard and (tpos < tlen or spos < slen):
result = False
return result
class MosquittoMessage:
""" This is a class that describes an incoming message. It is passed to the
on_message callback as the message parameter.
Members:
topic : String. topic that the message was published on.
payload : String/bytes the message payload.
qos : Integer. The message Quality of Service 0, 1 or 2.
retain : Boolean. If true, the message is a retained message and not fresh.
mid : Integer. The message id.
"""
def __init__(self):
self.timestamp = 0
self.direction = mosq_md_invalid
self.state = mosq_ms_invalid
self.dup = False
self.mid = 0
self.topic = ""
self.payload = None
self.qos = 0
self.retain = False
class MosquittoInPacket:
"""Internal datatype."""
def __init__(self):
self.command = 0
self.have_remaining = 0
self.remaining_count = []
self.remaining_mult = 1
self.remaining_length = 0
self.packet = b""
self.to_process = 0
self.pos = 0
def cleanup(self):
self.__init__()
class MosquittoPacket:
"""Internal datatype."""
def __init__(self, command, packet, mid, qos):
self.command = command
self.mid = mid
self.qos = qos
self.pos = 0
self.to_process = len(packet)
self.packet = packet
class Mosquitto:
"""MQTT version 3.1 client class.
This is the main class for use communicating with an MQTT broker.
General usage flow:
* Use connect()/connect_async() to connect to a broker
* Call loop() frequently to maintain network traffic flow with the broker
* Or use loop_start() to set a thread running to call loop() for you.
* Or use loop_forever() to handle calling loop() for you in a blocking
* function.
* Use subscribe() to subscribe to a topic and receive messages
* Use publish() to send messages
* Use disconnect() to disconnect from the broker
Data returned from the broker is made available with the use of callback
functions as described below.
Callbacks
=========
A number of callback functions are available to receive data back from the
broker. To use a callback, define a function and then assign it to the
client:
def on_connect(mosq, userdata, rc):
print("Connection returned " + str(rc))
client.on_connect = on_connect
All of the callbacks as described below have a "mosq" and an "userdata"
argument. "mosq" is the Mosquitto instance that is calling the callback.
"userdata" is user data of any type and can be set when creating a new
client instance or with user_data_set(userdata).
The callbacks:
on_connect(mosq, userdata, rc): called when the broker responds to our
connection request. The value of rc determines success or not:
0: Connection successful
1: Connection refused - incorrect protocol version
2: Connection refused - invalid client identifier
3: Connection refused - server unavailable
4: Connection refused - bad username or password
5: Connection refused - not authorised
6-255: Currently unused.
on_disconnect(mosq, userdata, rc): called when the client disconnects from
the broker. The rc parameter indicates the disconnection state. If
MOSQ_ERR_SUCCESS (0), the callback was called in response to a
disconnect() call. If any other value the disconnection was unexpected,
such as might be caused by a network error.
on_message(mosq, userdata, message): called when a message has been
received on a topic that the client subscribes to. The message variable
is a MosquittoMessage that describes all of the message parameters.
on_publish(mosq, userdata, mid): called when a message that was to be sent
using the publish() call has completed transmission to the broker. For
messages with QoS levels 1 and 2, this means that the appropriate
handshakes have completed. For QoS 0, this simply means that the message
has left the client. The mid variable matches the mid variable returned
from the corresponding publish() call, to allow outgoing messages to be
tracked. This callback is important because even if the publish() call
returns success, it does not always mean that the message has been sent.
on_subscribe(mosq, userdata, mid, granted_qos): called when the broker
responds to a subscribe request. The mid variable matches the mid
variable returned from the corresponding subscribe() call. The
granted_qos variable is a list of integers that give the QoS level the
broker has granted for each of the different subscription requests.
on_unsubscribe(mosq, userdata, mid): called when the broker responds to an
unsubscribe request. The mid variable matches the mid variable returned
from the corresponding unsubscribe() call.
on_log(mosq, userdata, level, buf): called when the client has log
information. Define to allow debugging. The level variable gives the
severity of the message and will be one of MOSQ_LOG_INFO,
MOSQ_LOG_NOTICE, MOSQ_LOG_WARNING, MOSQ_LOG_ERR, and MOSQ_LOG_DEBUG. The
message itself is in buf.
"""
def __init__(self, client_id="", clean_session=True, userdata=None):
"""client_id is the unique client id string used when connecting to the
broker. If client_id is zero length or None, then one will be randomly
generated. In this case, clean_session must be True. If this is not the
case a ValueError will be raised.
clean_session is a boolean that determines the client type. If True,
the broker will remove all information about this client when it
disconnects. If False, the client is a persistent client and
subscription information and queued messages will be retained when the
client disconnects.
Note that a client will never discard its own outgoing messages on
disconnect. Calling connect() or reconnect() will cause the messages to
be resent. Use reinitialise() to reset a client to its original state.
userdata is user defined data of any type that is passed as the
"userdata" parameter to callbacks. It may be updated at a later point
with the user_data_set() function.
"""
if not clean_session and (client_id == "" or client_id is None):
raise ValueError('A client id must be provided if clean session is False.')
self._userdata = userdata
self._sock = None
self._keepalive = 120
self._message_retry = 20
self._last_retry_check = 0
self._clean_session = clean_session
if client_id == "" or client_id is None:
self._client_id = "mosq/" + "".join(random.choice("0123456789ADCDEF") for x in range(23-5))
else:
self._client_id = client_id
self._username = ""
self._password = ""
self._in_packet = MosquittoInPacket()
self._out_packet = []
self._current_out_packet = None
self._last_msg_in = time.time()
self._last_msg_out = time.time()
self._ping_t = 0
self._last_mid = 0
self._state = mosq_cs_new
self._messages = []
self._max_inflight_messages = 20
self._inflight_messages = 0
self._will = False
self._will_topic = ""
self._will_payload = None
self._will_qos = 0
self._will_retain = False
self.on_disconnect = None
self.on_connect = None
self.on_publish = None
self.on_message = None
self.on_subscribe = None
self.on_unsubscribe = None
self.on_log = None
self._host = ""
self._port = 1883
self._bind_address = ""
self._in_callback = False
self._strict_protocol = False
self._callback_mutex = threading.Lock()
self._state_mutex = threading.Lock()
self._out_packet_mutex = threading.Lock()
self._current_out_packet_mutex = threading.Lock()
self._msgtime_mutex = threading.Lock()
self._message_mutex = threading.Lock()
self._thread = None
self._thread_terminate = False
self._ssl = None
self._tls_certfile = None
self._tls_keyfile = None
self._tls_ca_certs = None
self._tls_cert_reqs = None
self._tls_ciphers = None
self._tls_insecure = False
self._reconnect_delay = 1
self._reconnect_delay_max = 1
self._reconnect_exponential_backoff = False
def __del__(self):
pass
def reinitialise(self, client_id="", clean_session=True, userdata=None):
if self._ssl:
self._ssl.close()
self._ssl = None
self._sock = None
elif self._sock:
self._sock.close()
self._sock = None
self.__init__(client_id, clean_session, userdata)
def tls_set(self, ca_certs, certfile=None, keyfile=None, cert_reqs=ssl.CERT_REQUIRED, tls_version=ssl.PROTOCOL_TLSv1, ciphers=None):
"""Configure network encryption and authentication options. Enables SSL/TLS support.
ca_certs : a string path to the Certificate Authority certificate files
that are to be treated as trusted by this client. If this is the only
option given then the client will operate in a similar manner to a web
browser. That is to say it will require the broker to have a
certificate signed by the Certificate Authorities in ca_certs and will
communicate using TLS v1, but will not attempt any form of
authentication. This provides basic network encryption but may not be
sufficient depending on how the broker is configured.
certfile and keyfile are strings pointing to the PEM encoded client
certificate and private keys respectively. If these arguments are not
None then they will be used as client information for TLS based
authentication. Support for this feature is broker dependent. Note
that if either of these files in encrypted and needs a password to
decrypt it, Python will ask for the password at the command line. It is
not currently possible to define a callback to provide the password.
cert_reqs allows the certificate requirements that the client imposes
on the broker to be changed. By default this is ssl.CERT_REQUIRED,
which means that the broker must provide a certificate. See the ssl
pydoc for more information on this parameter.
tls_version allows the version of the SSL/TLS protocol used to be
specified. By default TLS v1 is used. Previous versions (all versions
beginning with SSL) are possible but not recommended due to possible
security problems.
ciphers is a string specifying which encryption ciphers are allowable
for this connection, or None to use the defaults. See the ssl pydoc for
more information.
Must be called before connect() or connect_async()."""
if sys.version < '2.7':
raise ValueError('Python 2.7 is the minimum supported version for TLS.')
if ca_certs is None:
raise ValueError('ca_certs must not be None.')
try:
f = open(ca_certs, "r")
except IOError as err:
raise IOError(ca_certs+": "+err.strerror)
else:
f.close()
if certfile is not None:
try:
f = open(certfile, "r")
except IOError as err:
raise IOError(certfile+": "+err.strerror)
else:
f.close()
if keyfile is not None:
try:
f = open(keyfile, "r")
except IOError as err:
raise IOError(keyfile+": "+err.strerror)
else:
f.close()
self._tls_ca_certs = ca_certs
self._tls_certfile = certfile
self._tls_keyfile = keyfile
self._tls_cert_reqs = cert_reqs
self._tls_version = tls_version
self._tls_ciphers = ciphers
def tls_insecure_set(self, value):
"""Configure verification of the server hostname in the server certificate.
If value is set to true, it is impossible to guarantee that the host
you are connecting to is not impersonating your server. This can be
useful in initial server testing, but makes it possible for a malicious
third party to impersonate your server through DNS spoofing, for
example.
Do not use this function in a real system. Setting value to true means
there is no point using encryption.
Must be called before connect()."""
self._tls_insecure = value
def connect(self, host, port=1883, keepalive=120, bind_address=""):
"""Connect to a remote broker.
host is the hostname or IP address of the remote broker.
port is the network port of the server host to connect to. Defaults to
1883. Note that the default port for MQTT over SSL/TLS is 8883 so if
you are using tls_set() the port may need providing.
keepalive: Maximum period in seconds between communications with the
broker. If no other messages are being exchanged, this controls the
rate at which the client will send ping messages to the broker.
"""
self.connect_async(host, port, keepalive, bind_address)
return self.reconnect()
def connect_async(self, host, port=1883, keepalive=60, bind_address=""):
"""Connect to a remote broker asynchronously. This is a non-blocking
connect call that can be used with loop_start() to provide very quick
start.
host is the hostname or IP address of the remote broker.
port is the network port of the server host to connect to. Defaults to
1883. Note that the default port for MQTT over SSL/TLS is 8883 so if
you are using tls_set() the port may need providing.
keepalive: Maximum period in seconds between communications with the
broker. If no other messages are being exchanged, this controls the
rate at which the client will send ping messages to the broker.
"""
if host is None or len(host) == 0:
raise ValueError('Invalid host.')
if port <= 0:
raise ValueError('Invalid port number.')
if keepalive < 0:
raise ValueError('Keepalive must be >=0.')
if bind_address != "" and bind_address is not None:
if (sys.version_info[0] == 2 and sys.version_info[1] < 7) or (sys.version_info[0] == 3 and sys.version_info[1] < 2):
raise ValueError('bind_address requires Python 2.7 or 3.2.')
self._host = host
self._port = port
self._keepalive = keepalive
self._bind_address = bind_address
self._state_mutex.acquire()
self._state = mosq_cs_connect_async
self._state_mutex.release()
def reconnect(self):
"""Reconnect the client after a disconnect. Can only be called after
connect()/connect_async()."""
if len(self._host) == 0:
raise ValueError('Invalid host.')
if self._port <= 0:
raise ValueError('Invalid port number.')
self._in_packet.cleanup()
self._out_packet_mutex.acquire()
self._out_packet = []
self._out_packet_mutex.release()
self._current_out_packet_mutex.acquire()
self._current_out_packet = None
self._current_out_packet_mutex.release()
self._msgtime_mutex.acquire()
self._last_msg_in = time.time()
self._last_msg_out = time.time()
self._msgtime_mutex.release()
self._ping_t = 0
self._state_mutex.acquire()
self._state = mosq_cs_new
self._state_mutex.release()
if self._ssl:
self._ssl.close()
self._ssl = None
self._sock = None
elif self._sock:
self._sock.close()
self._sock = None
# Put messages in progress in a valid state.
self._messages_reconnect_reset()
try:
if (sys.version_info[0] == 2 and sys.version_info[1] < 7) or (sys.version_info[0] == 3 and sys.version_info[1] < 2):
self._sock = socket.create_connection((self._host, self._port), source_address=(self._bind_address, 0))
else:
self._sock = socket.create_connection((self._host, self._port))
except socket.error as err:
(msg) = err
if msg.errno != errno.EINPROGRESS:
raise
if self._tls_ca_certs is not None:
self._ssl = ssl.wrap_socket(
self._sock,
certfile=self._tls_certfile,
keyfile=self._tls_keyfile,
ca_certs=self._tls_ca_certs,
cert_reqs=self._tls_cert_reqs,
ssl_version=self._tls_version,
ciphers=self._tls_ciphers)
if self._tls_insecure is False:
if sys.version_info[0] < 3 or (sys.version_info[0] == 3 and sys.version_info[1] < 2):
self._tls_match_hostname()
else:
ssl.match_hostname(self._ssl.getpeercert(), self._host)
self._sock.setblocking(0)
return self._send_connect(self._keepalive, self._clean_session)
def loop(self, timeout=1.0, max_packets=1):
"""Process network events.
This function must be called regularly to ensure communication with the
broker is carried out. It calls select() on the network socket to wait
for network events. If incoming data is present it will then be
processed. Outgoing commands, from e.g. publish(), are normally sent
immediately that their function is called, but this is not always
possible. loop() will also attempt to send any remaining outgoing
messages, which also includes commands that are part of the flow for
messages with QoS>0.
timeout: The time in seconds to wait for incoming/outgoing network
traffic before timing out and returning.
max_packets: Not currently used.
Returns MOSQ_ERR_SUCCESS on success.
Returns >0 on error.
A ValueError will be raised if timeout < 0"""
if timeout < 0.0:
raise ValueError('Invalid timeout.')
self._current_out_packet_mutex.acquire()
self._out_packet_mutex.acquire()
if self._current_out_packet is None and len(self._out_packet) > 0:
self._current_out_packet = self._out_packet.pop(0)
if self._current_out_packet:
wlist = [self.socket()]
else:
wlist = []
self._out_packet_mutex.release()
self._current_out_packet_mutex.release()
rlist = [self.socket()]
try:
socklist = select.select(rlist, wlist, [], timeout)
except TypeError:
# Socket isn't correct type, in likelihood connection is lost
return MOSQ_ERR_CONN_LOST
if self.socket() in socklist[0]:
rc = self.loop_read(max_packets)
if rc or (self._ssl is None and self._sock is None):
return rc
if self.socket() in socklist[1]:
rc = self.loop_write(max_packets)
if rc or (self._ssl is None and self._sock is None):
return rc
return self.loop_misc()
def publish(self, topic, payload=None, qos=0, retain=False):
"""Publish a message on a topic.
This causes a message to be sent to the broker and subsequently from
the broker to any clients subscribing to matching topics.
topic: The topic that the message should be published on.
payload: The actual message to send. If not given, or set to None a
zero length message will be used. Passing an int or float will result
in the payload being converted to a string representing that number. If
you wish to send a true int/float, use struct.pack() to create the
payload you require.
qos: The quality of service level to use.
retain: If set to true, the message will be set as the "last known
good"/retained message for the topic.
Returns a tuple (result, mid), where result is MOSQ_ERR_SUCCESS to
indicate success or MOSQ_ERR_NO_CONN if the client is not currently
connected. mid is the message ID for the publish request. The mid
value can be used to track the publish request by checking against the
mid argument in the on_publish() callback if it is defined.
A ValueError will be raised if topic is None, has zero length or is
invalid (contains a wildcard), if qos is not one of 0, 1 or 2, or if
the length of the payload is greater than 268435455 bytes."""
if topic is None or len(topic) == 0:
raise ValueError('Invalid topic.')
if qos<0 or qos>2:
raise ValueError('Invalid QoS level.')
if isinstance(payload, str) or isinstance(payload, bytearray):
local_payload = payload
elif isinstance(payload, int) or isinstance(payload, float):
local_payload = str(payload)
elif payload is None:
local_payload = None
else:
raise TypeError('payload must be a string, bytearray, int, float or None.')
if local_payload is not None and len(local_payload) > 268435455:
raise ValueError('Payload too large.')
if self._topic_wildcard_len_check(topic) != MOSQ_ERR_SUCCESS:
raise ValueError('Publish topic cannot contain wildcards.')
local_mid = self._mid_generate()
if qos == 0:
rc = self._send_publish(local_mid, topic, local_payload, qos, retain, False)
return (rc, local_mid)
else:
message = MosquittoMessage()
message.timestamp = time.time()
message.direction = mosq_md_out
message.mid = local_mid
message.topic = topic
if local_payload is None or len(local_payload) == 0:
message.payload = None
else:
message.payload = local_payload
message.qos = qos
message.retain = retain
message.dup = False
self._message_mutex.acquire()
self._messages.append(message)
if self._max_inflight_messages == 0 or self._inflight_messages < self._max_inflight_messages:
self._inflight_messages = self._inflight_messages+1
if qos == 1:
message.state = mosq_ms_wait_puback
elif qos == 2:
message.state = mosq_ms_wait_pubrec
self._message_mutex.release()
rc = self._send_publish(message.mid, message.topic, message.payload, message.qos, message.retain, message.dup)
return (rc, local_mid)
self._message_mutex.release()
return (MOSQ_ERR_SUCCESS, local_mid)
def username_pw_set(self, username, password=None):
"""Set a username and optionally a password for broker authentication.
Must be called before connect() to have any effect.
Requires a broker that supports MQTT v3.1.
username: The username to authenticate with. Need have no relationship
to the client id.
password: The password to authenticate with. Optional, set to None if
not required.
"""
self._username = username
self._password = password
def disconnect(self):
"""Disconnect a connected client from the broker."""
self._state_mutex.acquire()
self._state = mosq_cs_disconnecting
self._state_mutex.release()
if self._sock is None and self._ssl is None:
return MOSQ_ERR_NO_CONN
return self._send_disconnect()
def subscribe(self, topic, qos=0):
"""Subscribe the client to one or more topics.
This function may be called in three different ways:
Simple string and integer
-------------------------
e.g. subscribe("my/topic", 2)
topic: A string specifying the subscription topic to subscribe to.
qos: The desired quality of service level for the subscription.
Defaults to 0.
String and integer tuple
------------------------
e.g. subscribe(("my/topic", 1))
topic: A tuple of (topic, qos). Both topic and qos must be present in
the tuple.
qos: Not used.
List of string and integer tuples
------------------------
e.g. subscribe([("my/topic", 0), ("another/topic", 2)])
This allows multiple topic subscriptions in a single SUBSCRIPTION
command, which is more efficient than using multiple calls to
subscribe().
topic: A list of tuple of format (topic, qos). Both topic and qos must
be present in all of the tuples.
qos: Not used.
The function returns a tuple (result, mid), where result is
MOSQ_ERR_SUCCESS to indicate success or MOSQ_ERR_NO_CONN if the client
is not currently connected. mid is the message ID for the subscribe
request. The mid value can be used to track the subscribe request by
checking against the mid argument in the on_subscribe() callback if it
is defined.
Raises a ValueError if qos is not 0, 1 or 2, or if topic is None or has
zero string length, or if topic is not a string, tuple or list.
"""
topic_qos_list = None
if isinstance(topic, str):
if qos<0 or qos>2:
raise ValueError('Invalid QoS level.')
if topic is None or len(topic) == 0:
raise ValueError('Invalid topic.')
topic_qos_list = [(topic, qos)]
elif isinstance(topic, tuple):
if topic[1]<0 or topic[1]>2:
raise ValueError('Invalid QoS level.')
if topic[0] is None or len(topic[0]) == 0 or not isinstance(topic[0], str):
raise ValueError('Invalid topic.')
topic_qos_list = [topic]
elif isinstance(topic, list):
for t in topic:
if t[1]<0 or t[1]>2:
raise ValueError('Invalid QoS level.')
if t[0] is None or len(t[0]) == 0 or not isinstance(t[0], str):
raise ValueError('Invalid topic.')
topic_qos_list = topic
if topic_qos_list is None:
raise ValueError("No topic specified, or incorrect topic type.")
if self._sock is None and self._ssl is None:
return MOSQ_ERR_NO_CONN
return self._send_subscribe(False, topic_qos_list)
def unsubscribe(self, topic):
"""Unsubscribe the client from one or more topics.
topic: A single string, or list of strings that are the subscription
topics to unsubscribe from.
Returns a tuple (result, mid), where result is MOSQ_ERR_SUCCESS
to indicate success or MOSQ_ERR_NO_CONN if the client is not currently
connected.
mid is the message ID for the unsubscribe request. The mid value can be
used to track the unsubscribe request by checking against the mid
argument in the on_unsubscribe() callback if it is defined.
Raises a ValueError if topic is None or has zero string length, or is
not a string or list.
"""
topic_list = None
if topic is None:
raise ValueError('Invalid topic.')
if isinstance(topic, str):
if len(topic) == 0:
raise ValueError('Invalid topic.')
topic_list = [topic]
elif isinstance(topic, list):
for t in topic:
if len(t) == 0 or not isinstance(t, str):
raise ValueError('Invalid topic.')
topic_list = topic
if topic_list is None:
raise ValueError("No topic specified, or incorrect topic type.")
if self._sock is None and self._ssl is None:
return MOSQ_ERR_NO_CONN
return self._send_unsubscribe(False, topic_list)
def loop_read(self, max_packets=1):
"""Process read network events. Use in place of calling loop() if you
wish to handle your client reads as part of your own application.
Use socket() to obtain the client socket to call select() or equivalent
on.
Do not use if you are using the threaded interface loop_start()."""
if self._sock is None and self._ssl is None:
return MOSQ_ERR_NO_CONN
max_packets = len(self._messages)
if max_packets < 1:
max_packets = 1
for i in range(0, max_packets):
rc = self._packet_read()
if rc > 0:
return self._loop_rc_handle(rc)
elif rc == MOSQ_ERR_AGAIN:
return MOSQ_ERR_SUCCESS
return MOSQ_ERR_SUCCESS
def loop_write(self, max_packets=1):
"""Process read network events. Use in place of calling loop() if you
wish to handle your client reads as part of your own application.
Use socket() to obtain the client socket to call select() or equivalent
on.
Use want_write() to determine if there is data waiting to be written.
Do not use if you are using the threaded interface loop_start()."""
if self._sock is None and self._ssl is None:
return MOSQ_ERR_NO_CONN
max_packets = len(self._messages)
if max_packets < 1:
max_packets = 1
for i in range(0, max_packets):
rc = self._packet_write()
if rc > 0:
return self._loop_rc_handle(rc)
elif rc == MOSQ_ERR_AGAIN:
return MOSQ_ERR_SUCCESS
return MOSQ_ERR_SUCCESS
def want_write(self):
"""Call to determine if there is network data waiting to be written.
Useful if you are calling select() yourself rather than using loop().
"""
if self._current_out_packet or len(self._out_packet) > 0:
return True
else:
return False
def loop_misc(self):
"""Process miscellaneous network events. Use in place of calling loop()
if you wish to call select() or equivalent on.
Do not use if you are using the threaded interface loop_start()."""
if self._sock is None and self._ssl is None:
return MOSQ_ERR_NO_CONN
now = time.time()
self._check_keepalive()
if self._last_retry_check+1 < now:
# Only check once a second at most
self._message_retry_check()
self._last_retry_check = now
if self._ping_t > 0 and now - self._ping_t >= self._keepalive:
# mosq->ping_t != 0 means we are waiting for a pingresp.
# This hasn't happened in the keepalive time so we should
# disconnect.
if self._ssl:
self._ssl.close()
self._ssl = None
elif self._sock:
self._sock.close()
self._sock = None
self._callback_mutex.acquire()
if self._state == mosq_cs_disconnecting:
rc = MOSQ_ERR_SUCCESS
else:
rc = 1
if self.on_disconnect:
self._in_callback = True
self.on_disconnect(self, self._userdata, rc)
self._in_callback = False
self._callback_mutex.release()
return MOSQ_ERR_CONN_LOST
return MOSQ_ERR_SUCCESS
def max_inflight_messages_set(self, inflight):
"""Set the maximum number of messages with QoS>0 that can be part way
through their network flow at once. Defaults to 20."""
if inflight < 0:
raise ValueError('Invalid inflight.')
self._max_inflight_messages = inflight
def message_retry_set(self, retry):
"""Set the timeout in seconds before a message with QoS>0 is retried.
20 seconds by default."""
if retry < 0:
raise ValueError('Invalid retry.')
self._message_retry = retry
def reconnect_delay_set(self, delay, delay_max, exponential_backoff):
"""Set the amount of time that the client will wait before reconnecting
after losing its connection to the broker.
delay is the number of seconds to wait between successive reconnect
attempts. By default this is set to 1.
delay_max is the maximum number of seconds to wait between reconnection
attempts and is also set to 1 by default. This means that the default
behaviour is to attempt to reconnect every second.
If exponential_backoff is False and delay_max is greater than delay,
then on each successive reconnect failure the delay will increase
linearly in the form delay*failure_count.
If exponential_backoff is True and delay_max is greater than delay,
then on each successive reconnect failure the delay will increase
exponentially in the form delay*failure_count^2.
In both cases, the maximum delay ever used is set by delay_max.
Example 1:
delay=2, delay_max=10, exponential_backoff=False
Delays would be: 2, 4, 6, 8, 10, 10, ...
Example 2:
delay=3, delay_max=30, exponential_backoff=True
Delays would be: 3, 6, 12, 24, 30, 30, ...
"""
if not isinstance(delay, int) or delay <= 0:
ValueError("delay must be a positive integer.")
if not isinstance(delay_max, int) or delay_max < delay:
ValueError("delay_max must be a integer and greater than delay.")
if not isinstance(exponential_backoff, bool):
ValueError("exponential_backoff must be a bool.")
self._reconnect_delay = delay
self._reconnect_delay_max = delay_max
self._reconnect_exponential_backoff = exponential_backoff
def user_data_set(self, userdata):
"""Set the user data variable passed to callbacks. May be any data
type."""
self._userdata = userdata
def will_set(self, topic, payload=None, qos=0, retain=False):
"""Set a Will to be sent by the broker in case the client disconnects
unexpectedly.
This must be called before connect() to have any effect.
topic: The topic that the will message should be published on.
payload: The message to send as a will. If not given, or set to None a
zero length message will be used as the will. Passing an int or float
will result in the payload being converted to a string representing
that number. If you wish to send a true int/float, use struct.pack() to
create the payload you require.
qos: The quality of service level to use for the will.
retain: If set to true, the will message will be set as the "last known
good"/retained message for the topic.
Raises a ValueError if qos is not 0, 1 or 2, or if topic is None or has
zero string length.
"""
if topic is None or len(topic) == 0:
raise ValueError('Invalid topic.')
if qos<0 or qos>2:
raise ValueError('Invalid QoS level.')
if isinstance(payload, str) or isinstance(payload, bytearray):
self._will_payload = payload
elif isinstance(payload, int) or isinstance(payload, float):
self._will_payload = str(payload)
elif payload is None:
self._will_payload = None
else:
raise TypeError('payload must be a string, bytearray, int, float or None.')
self._will = True
self._will_topic = topic
self._will_qos = qos
self._will_retain = retain
def will_clear(self):
""" Removes a will that was previously configured with will_set().
Must be called before connect() to have any effect."""
self._will = False
self._will_topic = ""
self._will_payload = None
self._will_qos = 0
self._will_retain = False
def socket(self):
"""Return the socket or ssl object for this client."""
if self._ssl:
return self._ssl
else:
return self._sock
def loop_forever(self, timeout=1.0, max_packets=1):
"""This function call loop() for you in an infinite blocking loop. It
is useful for the case where you only want to run the MQTT client loop
in your program.
loop_forever() will handle reconnecting for you. If you call
disconnect() in a callback it will return."""
reconnects = 0
run = True
if self._state == mosq_cs_connect_async:
self.reconnect()
while run:
rc = MOSQ_ERR_SUCCESS
while rc == MOSQ_ERR_SUCCESS:
rc = self.loop(timeout, max_packets)
#self added
#self.loop_misc()
# We don't need to worry about locking here, because we've
# either called loop_forever() when in single threaded mode, or
# in multi threaded mode when loop_stop() has been called and
# so no other threads can access _current_out_packet,
# _out_packet or _messages.
if (self._thread_terminate
and self._current_out_packet == None
and len(self._out_packet) == 0
and len(self._messages) == 0):
rc = 1
run = False
if rc == MOSQ_ERR_SUCCESS:
reconnects = 0
self._state_mutex.acquire()
if self._state == mosq_cs_disconnecting:
run = False
self._state_mutex.release()
else:
self._state_mutex.release()
if self._reconnect_delay > 0 and self._reconnect_exponential_backoff:
reconnect_delay = self._reconnect_delay*reconnects*reconnects
else:
reconnect_delay = self._reconnect_delay
if reconnect_delay > self._reconnect_delay_max:
reconnect_delay = self._reconnect_delay_max
else:
reconnects = reconnects + 1
time.sleep(reconnect_delay)
self._state_mutex.acquire()
if self._state == mosq_cs_disconnecting:
run = False
self._state_mutex.release()
else:
self._state_mutex.release()
try:
self.reconnect()
except socket.error as err:
pass
return rc
def loop_start(self):
"""This is part of the threaded client interface. Call this once to
start a new thread to process network traffic. This provides an
alternative to repeatedly calling loop() yourself.
"""
if self._thread is not None:
return MOSQ_ERR_INVAL
self._thread = threading.Thread(target=self._thread_main)
self._thread.daemon = True
self._thread.start()
def loop_stop(self, force=False):
"""This is part of the threaded client interface. Call this once to
stop the network thread previously created with loop_start(). This call
will block until the network thread finishes.
The force parameter is currently ignored.
"""
if self._thread is None:
return MOSQ_ERR_INVAL
self._thread_terminate = True
self._thread.join()
self._thread = None
# ============================================================
# Private functions
# ============================================================
def _loop_rc_handle(self, rc):
if rc:
if self._ssl:
self._ssl.close()
self._ssl = None
elif self._sock:
self._sock.close()
self._sock = None
self._state_mutex.acquire()
if self._state == mosq_cs_disconnecting:
rc = MOSQ_ERR_SUCCESS
self._state_mutex.release()
self._callback_mutex.acquire()
if self.on_disconnect:
self._in_callback = True
self.on_disconnect(self, self._userdata, rc)
self._in_callback = False
self._callback_mutex.release()
return rc
def _packet_read(self):
# This gets called if pselect() indicates that there is network data
# available - ie. at least one byte. What we do depends on what data
# we already have.
# If we've not got a command, attempt to read one and save it. This
# should always work because it's only a single byte.
# Then try to read the remaining length. This may fail because it is
# may be more than one byte - will need to save data pending next read
# if it does fail.
# Then try to read the remaining payload, where 'payload' here means
# the combined variable header and actual payload. This is the most
# likely to fail due to longer length, so save current data and current
# position. After all data is read, send to _mosquitto_handle_packet()
# to deal with. Finally, free the memory and reset everything to
# starting conditions.
if self._in_packet.command == 0:
try:
if self._ssl:
command = self._ssl.read(1)
else:
command = self._sock.recv(1)
except socket.error as err:
(msg) = err
if self._ssl and (msg.errno == ssl.SSL_ERROR_WANT_READ or msg.errno == ssl.SSL_ERROR_WANT_WRITE):
return MOSQ_ERR_AGAIN
if msg.errno == EAGAIN:
return MOSQ_ERR_AGAIN
raise
else:
if len(command) == 0:
return 1
command = struct.unpack("!B", command)
self._in_packet.command = command[0]
if self._in_packet.have_remaining == 0:
# Read remaining
# Algorithm for decoding taken from pseudo code in the spec.
while True:
try:
if self._ssl:
byte = self._ssl.read(1)
else:
byte = self._sock.recv(1)
except socket.error as err:
(msg) = err
if self._ssl and (msg.errno == ssl.SSL_ERROR_WANT_READ or msg.errno == ssl.SSL_ERROR_WANT_WRITE):
return MOSQ_ERR_AGAIN
if msg.errno == EAGAIN:
return MOSQ_ERR_AGAIN
raise
else:
byte = struct.unpack("!B", byte)
byte = byte[0]
self._in_packet.remaining_count.append(byte)
# Max 4 bytes length for remaining length as defined by
# protocol. Anything more likely means a broken/malicious
# client.
if len(self._in_packet.remaining_count) > 4:
return MOSQ_ERR_PROTOCOL
self._in_packet.remaining_length = self._in_packet.remaining_length + (byte & 127)*self._in_packet.remaining_mult
self._in_packet.remaining_mult = self._in_packet.remaining_mult * 128
if (byte & 128) == 0:
break
self._in_packet.have_remaining = 1
self._in_packet.to_process = self._in_packet.remaining_length
while self._in_packet.to_process > 0:
try:
if self._ssl:
data = self._ssl.read(self._in_packet.to_process)
else:
data = self._sock.recv(self._in_packet.to_process)
except socket.error as err:
(msg) = err
if self._ssl and (msg.errno == ssl.SSL_ERROR_WANT_READ or msg.errno == ssl.SSL_ERROR_WANT_WRITE):
return MOSQ_ERR_AGAIN
if msg.errno == EAGAIN:
return MOSQ_ERR_AGAIN
raise
else:
self._in_packet.to_process = self._in_packet.to_process - len(data)
self._in_packet.packet = self._in_packet.packet + data
# All data for this packet is read.
self._in_packet.pos = 0
rc = self._packet_handle()
# Free data and reset values
self._in_packet.cleanup()
self._msgtime_mutex.acquire()
self._last_msg_in = time.time()
self._msgtime_mutex.release()
return rc
def _packet_write(self):
self._current_out_packet_mutex.acquire()
while self._current_out_packet:
packet = self._current_out_packet
try:
if self._ssl:
#count = 0
while True:
#count += 1
try:
write_length = self._ssl.write(packet.packet[packet.pos:])
#print "ssl error part"
break
except:
pass
#if count > 100:
#count = 0
#print "had an ssl error"
#return MOSQ_ERR_AGAIN
else:
write_length = self._sock.send(packet.packet[packet.pos:])
except AttributeError:
self._current_out_packet_mutex.release()
return MOSQ_ERR_SUCCESS
except socket.error as err:
self._current_out_packet_mutex.release()
(msg) = err
if self._ssl and (msg.errno == ssl.SSL_ERROR_WANT_READ or msg.errno == ssl.SSL_ERROR_WANT_WRITE):
return MOSQ_ERR_AGAIN
if msg.errno == EAGAIN:
return MOSQ_ERR_AGAIN
raise
if write_length > 0:
packet.to_process = packet.to_process - write_length
packet.pos = packet.pos + write_length
if packet.to_process == 0:
if (packet.command & 0xF0) == PUBLISH and packet.qos == 0:
self._callback_mutex.acquire()
if self.on_publish:
self._in_callback = True
self.on_publish(self, self._userdata, packet.mid)
self._in_callback = False
self._callback_mutex.release()
if (packet.command & 0xF0) == DISCONNECT:
self._current_out_packet_mutex.release()
self._msgtime_mutex.acquire()
self._last_msg_out = time.time()
self._msgtime_mutex.release()
self._callback_mutex.acquire()
if self.on_disconnect:
self._in_callback = True
self.on_disconnect(self, self._userdata, 0)
self._in_callback = False
self._callback_mutex.release()
return MOSQ_ERR_SUCCESS
self._out_packet_mutex.acquire()
if len(self._out_packet) > 0:
self._current_out_packet = self._out_packet.pop(0)
else:
self._current_out_packet = None
self._out_packet_mutex.release()
else:
pass # FIXME
self._current_out_packet_mutex.release()
self._msgtime_mutex.acquire()
self._last_msg_out = time.time()
self._msgtime_mutex.release()
return MOSQ_ERR_SUCCESS
def _easy_log(self, level, buf):
if self.on_log:
self.on_log(self, self._userdata, level, buf)
def _check_keepalive(self):
now = time.time()
self._msgtime_mutex.acquire()
last_msg_out = self._last_msg_out
last_msg_in = self._last_msg_in
self._msgtime_mutex.release()
if (self._sock is not None or self._ssl is not None) and (now - last_msg_out >= self._keepalive or now - last_msg_in >= self._keepalive):
if self._state == mosq_cs_connected and self._ping_t == 0:
self._send_pingreq()
self._msgtime_mutex.acquire()
self._last_msg_out = now
self._last_msg_in = now
self._msgtime_mutex.release()
else:
if self._ssl:
self._ssl.close()
self._ssl = None
elif self._sock:
self._sock.close()
self._sock = None
if self._state == mosq_cs_disconnecting:
rc = MOSQ_ERR_SUCCESS
else:
rc = 1
self._callback_mutex.acquire()
if self.on_disconnect:
self._in_callback = True
self.on_disconnect(self, self._userdata, rc)
self._in_callback = False
self._callback_mutex.release()
def _mid_generate(self):
self._last_mid = self._last_mid + 1
if self._last_mid == 65536:
self._last_mid = 1
return self._last_mid
def _topic_wildcard_len_check(self, topic):
# Search for + or # in a topic. Return MOSQ_ERR_INVAL if found.
# Also returns MOSQ_ERR_INVAL if the topic string is too long.
# Returns MOSQ_ERR_SUCCESS if everything is fine.
if '+' in topic or '#' in topic or len(topic) == 0 or len(topic) > 65535:
return MOSQ_ERR_INVAL
else:
return MOSQ_ERR_SUCCESS
def _send_pingreq(self):
self._easy_log(MOSQ_LOG_DEBUG, "Sending PINGREQ")
rc = self._send_simple_command(PINGREQ)
if rc == MOSQ_ERR_SUCCESS:
self._ping_t = time.time()
return rc
def _send_pingresp(self):
self._easy_log(MOSQ_LOG_DEBUG, "Sending PINGRESP")
return self._send_simple_command(PINGRESP)
def _send_puback(self, mid):
self._easy_log(MOSQ_LOG_DEBUG, "Sending PUBACK (Mid: "+str(mid)+")")
return self._send_command_with_mid(PUBACK, mid, False)
def _send_pubcomp(self, mid):
self._easy_log(MOSQ_LOG_DEBUG, "Sending PUBCOMP (Mid: "+str(mid)+")")
return self._send_command_with_mid(PUBCOMP, mid, False)
def _pack_remaining_length(self, packet, remaining_length):
remaining_bytes = []
while True:
byte = remaining_length % 128
remaining_length = remaining_length // 128
# If there are more digits to encode, set the top bit of this digit
if remaining_length > 0:
byte = byte | 0x80
remaining_bytes.append(byte)
packet.extend(struct.pack("!B", byte))
if remaining_length == 0:
# FIXME - this doesn't deal with incorrectly large payloads
return packet
def _pack_str16(self, packet, data):
if sys.version_info[0] < 3:
if isinstance(data, bytearray):
packet.extend(struct.pack("!H", len(data)))
packet.extend(data)
elif isinstance(data, str):
pack_format = "!H" + str(len(data)) + "s"
packet.extend(struct.pack(pack_format, len(data), data))
elif isinstance(data, unicode):
udata = data.encode('utf-8')
pack_format = "!H" + str(len(udata)) + "s"
packet.extend(struct.pack(pack_format, len(udata), udata))
else:
raise TypeError
else:
if isinstance(data, bytearray):
packet.extend(struct.pack("!H", len(data)))
packet.extend(data)
elif isinstance(data, str):
udata = data.encode('utf-8')
pack_format = "!H" + str(len(udata)) + "s"
packet.extend(struct.pack(pack_format, len(udata), udata))
else:
raise TypeError
def _send_publish(self, mid, topic, payload=None, qos=0, retain=False, dup=False):
if self._sock is None and self._ssl is None:
return MOSQ_ERR_NO_CONN
command = PUBLISH | ((dup&0x1)<<3) | (qos<<1) | retain
packet = bytearray()
packet.extend(struct.pack("!B", command))
if payload is None:
remaining_length = 2+len(topic)
self._easy_log(MOSQ_LOG_DEBUG, "Sending PUBLISH (d"+str(dup)+", q"+str(qos)+", r"+str(int(retain))+", m"+str(mid)+", '"+topic+"' (NULL payload)")
else:
remaining_length = 2+len(topic) + len(payload)
self._easy_log(MOSQ_LOG_DEBUG, "Sending PUBLISH (d"+str(dup)+", q"+str(qos)+", r"+str(int(retain))+", m"+str(mid)+", '"+topic+"', ... ("+str(len(payload))+" bytes)")
if qos > 0:
# For message id
remaining_length = remaining_length + 2
self._pack_remaining_length(packet, remaining_length)
self._pack_str16(packet, topic)
if qos > 0:
# For message id
packet.extend(struct.pack("!H", mid))
if payload is not None:
if isinstance(payload, str):
if sys.version_info[0] < 3:
pack_format = str(len(payload)) + "s"
packet.extend(struct.pack(pack_format, payload))
else:
upayload = payload.encode('utf-8')
pack_format = str(len(upayload)) + "s"
packet.extend(struct.pack(pack_format, upayload))
elif isinstance(payload, bytearray):
packet.extend(payload)
elif isinstance(payload, unicode):
upayload = payload.encode('utf-8')
pack_format = str(len(upayload)) + "s"
packet.extend(struct.pack(pack_format, upayload))
else:
raise TypeError('payload must be a string, unicode or a bytearray.')
return self._packet_queue(PUBLISH, packet, mid, qos)
def _send_pubrec(self, mid):
self._easy_log(MOSQ_LOG_DEBUG, "Sending PUBREC (Mid: "+str(mid)+")")
return self._send_command_with_mid(PUBREC, mid, False)
def _send_pubrel(self, mid, dup=False):
self._easy_log(MOSQ_LOG_DEBUG, "Sending PUBREL (Mid: "+str(mid)+")")
return self._send_command_with_mid(PUBREL|2, mid, dup)
def _send_command_with_mid(self, command, mid, dup):
# For PUBACK, PUBCOMP, PUBREC, and PUBREL
if dup:
command = command | 8
remaining_length = 2
packet = struct.pack('!BBH', command, remaining_length, mid)
return self._packet_queue(command, packet, mid, 1)
def _send_simple_command(self, command):
# For DISCONNECT, PINGREQ and PINGRESP
remaining_length = 0
packet = struct.pack('!BB', command, remaining_length)
return self._packet_queue(command, packet, 0, 0)
def _send_connect(self, keepalive, clean_session):
remaining_length = 12 + 2+len(self._client_id)
connect_flags = 0
if clean_session:
connect_flags = connect_flags | 0x02
if self._will:
if self._will_payload is not None:
remaining_length = remaining_length + 2+len(self._will_topic) + 2+len(self._will_payload)
else:
remaining_length = remaining_length + 2+len(self._will_topic) + 2
connect_flags = connect_flags | 0x04 | ((self._will_qos&0x03) << 3) | ((self._will_retain&0x01) << 5)
if self._username:
remaining_length = remaining_length + 2+len(self._username)
connect_flags = connect_flags | 0x80
if self._password:
connect_flags = connect_flags | 0x40
remaining_length = remaining_length + 2+len(self._password)
command = CONNECT
packet = bytearray()
packet.extend(struct.pack("!B", command))
self._pack_remaining_length(packet, remaining_length)
packet.extend(struct.pack("!H6sBBH", len(PROTOCOL_NAME), PROTOCOL_NAME, PROTOCOL_VERSION, connect_flags, keepalive))
self._pack_str16(packet, self._client_id)
if self._will:
self._pack_str16(packet, self._will_topic)
if self._will_payload is None or len(self._will_payload) == 0:
packet.extend(struct.pack("!H", 0))
else:
self._pack_str16(packet, self._will_payload)
if self._username:
self._pack_str16(packet, self._username)
if self._password:
self._pack_str16(packet, self._password)
self._keepalive = 120
return self._packet_queue(command, packet, 0, 0)
def _send_disconnect(self):
return self._send_simple_command(DISCONNECT)
def _send_subscribe(self, dup, topics):
remaining_length = 2
for t in topics:
remaining_length = remaining_length + 2+len(t[0])+1
command = SUBSCRIBE | (dup<<3) | (1<<1)
packet = bytearray()
packet.extend(struct.pack("!B", command))
self._pack_remaining_length(packet, remaining_length)
local_mid = self._mid_generate()
packet.extend(struct.pack("!H", local_mid))
for t in topics:
self._pack_str16(packet, t[0])
packet.extend(struct.pack("B", t[1]))
return (self._packet_queue(command, packet, local_mid, 1), local_mid)
def _send_unsubscribe(self, dup, topics):
remaining_length = 2
for t in topics:
remaining_length = remaining_length + 2+len(t)
command = UNSUBSCRIBE | (dup<<3) | (1<<1)
packet = bytearray()
packet.extend(struct.pack("!B", command))
self._pack_remaining_length(packet, remaining_length)
local_mid = self._mid_generate()
packet.extend(struct.pack("!H", local_mid))
for t in topics:
self._pack_str16(packet, t)
return (self._packet_queue(command, packet, local_mid, 1), local_mid)
def _message_update(self, mid, direction, state):
self._message_mutex.acquire()
for m in self._messages:
if m.mid == mid and m.direction == direction:
m.state = state
m.timestamp = time.time()
self._message_mutex.release()
return MOSQ_ERR_SUCCESS
self._message_mutex.release()
return MOSQ_ERR_NOT_FOUND
def _message_retry_check(self):
self._message_mutex.acquire()
now = time.time()
for m in self._messages:
if m.timestamp + self._message_retry < now:
if m.state == mosq_ms_wait_puback or m.state == mosq_ms_wait_pubrec:
m.timestamp = now
m.dup = True
self._send_publish(m.mid, m.topic, m.payload, m.qos, m.retain, m.dup)
elif m.state == mosq_ms_wait_pubrel:
m.timestamp = now
m.dup = True
self._send_pubrec(m.mid)
elif m.state == mosq_ms_wait_pubcomp:
m.timestamp = now
m.dup = True
self._send_pubrel(m.mid, True)
self._message_mutex.release()
def _messages_reconnect_reset(self):
self._message_mutex.acquire()
for m in self._messages:
m.timestamp = 0
if m.direction == mosq_md_out:
if self._max_inflight_messages == 0 or self._inflight_messages < self._max_inflight_messages:
if m.qos == 1:
m.state = mosq_ms_wait_puback
elif m.qos == 2:
# Preserve current state
pass
else:
m.state = mosq_ms_invalid
else:
if m.qos != 2:
self._messages.pop(self._messages.index(m))
else:
# Preserve current state
pass
self._message_mutex.release()
def _packet_queue(self, command, packet, mid, qos):
mpkt = MosquittoPacket(command, packet, mid, qos)
self._out_packet_mutex.acquire()
self._out_packet.append(mpkt)
if self._current_out_packet_mutex.acquire(False):
if self._current_out_packet is None and len(self._out_packet) > 0:
self._current_out_packet = self._out_packet.pop(0)
self._current_out_packet_mutex.release()
self._out_packet_mutex.release()
if not self._in_callback and self._thread is None:
return self.loop_write()
else:
return MOSQ_ERR_SUCCESS
def _packet_handle(self):
cmd = self._in_packet.command&0xF0
if cmd == PINGREQ:
return self._handle_pingreq()
elif cmd == PINGRESP:
return self._handle_pingresp()
elif cmd == PUBACK:
return self._handle_pubackcomp("PUBACK")
elif cmd == PUBCOMP:
return self._handle_pubackcomp("PUBCOMP")
elif cmd == PUBLISH:
return self._handle_publish()
elif cmd == PUBREC:
return self._handle_pubrec()
elif cmd == PUBREL:
return self._handle_pubrel()
elif cmd == CONNACK:
return self._handle_connack()
elif cmd == SUBACK:
return self._handle_suback()
elif cmd == UNSUBACK:
return self._handle_unsuback()
else:
# If we don't recognise the command, return an error straight away.
self._easy_log(MOSQ_LOG_ERR, "Error: Unrecognised command "+str(cmd))
return MOSQ_ERR_PROTOCOL
def _handle_pingreq(self):
if self._strict_protocol:
if self._in_packet.remaining_length != 0:
return MOSQ_ERR_PROTOCOL
self._easy_log(MOSQ_LOG_DEBUG, "Received PINGREQ")
return self._send_pingresp()
def _handle_pingresp(self):
if self._strict_protocol:
if self._in_packet.remaining_length != 0:
return MOSQ_ERR_PROTOCOL
# No longer waiting for a PINGRESP.
self._ping_t = 0
self._easy_log(MOSQ_LOG_DEBUG, "Received PINGRESP")
return MOSQ_ERR_SUCCESS
def _handle_connack(self):
if self._strict_protocol:
if self._in_packet.remaining_length != 2:
return MOSQ_ERR_PROTOCOL
if len(self._in_packet.packet) != 2:
return MOSQ_ERR_PROTOCOL
(resvd, result) = struct.unpack("!BB", self._in_packet.packet)
self._easy_log(MOSQ_LOG_DEBUG, "Received CONNACK ("+str(resvd)+", "+str(result)+")")
self._callback_mutex.acquire()
if self.on_connect:
self._in_callback = True
self.on_connect(self, self._userdata, result)
self._in_callback = False
self._callback_mutex.release()
if result == 0:
self._state = mosq_cs_connected
return MOSQ_ERR_SUCCESS
elif result > 0 and result < 6:
return MOSQ_ERR_CONN_REFUSED
else:
return MOSQ_ERR_PROTOCOL
def _handle_suback(self):
self._easy_log(MOSQ_LOG_DEBUG, "Received SUBACK")
pack_format = "!H" + str(len(self._in_packet.packet)-2) + 's'
(mid, packet) = struct.unpack(pack_format, self._in_packet.packet)
pack_format = "!" + "B"*len(packet)
granted_qos = struct.unpack(pack_format, packet)
self._callback_mutex.acquire()
if self.on_subscribe:
self._in_callback = True
self.on_subscribe(self, self._userdata, mid, granted_qos)
self._in_callback = False
self._callback_mutex.release()
return MOSQ_ERR_SUCCESS
def _handle_publish(self):
rc = 0
header = self._in_packet.command
message = MosquittoMessage()
message.direction = mosq_md_in
message.dup = (header & 0x08)>>3
message.qos = (header & 0x06)>>1
message.retain = (header & 0x01)
pack_format = "!H" + str(len(self._in_packet.packet)-2) + 's'
(slen, packet) = struct.unpack(pack_format, self._in_packet.packet)
pack_format = '!' + str(slen) + 's' + str(len(packet)-slen) + 's'
(message.topic, packet) = struct.unpack(pack_format, packet)
if len(message.topic) == 0:
return MOSQ_ERR_PROTOCOL
if sys.version_info[0] >= 3:
message.topic = message.topic.decode('utf-8')
if message.qos > 0:
pack_format = "!H" + str(len(packet)-2) + 's'
(message.mid, packet) = struct.unpack(pack_format, packet)
message.payload = packet
self._easy_log(
MOSQ_LOG_DEBUG,
"Received PUBLISH (d"+str(message.dup)+
", q"+str(message.qos)+", r"+str(message.retain)+
", m"+str(message.mid)+", '"+message.topic+
"', ... ("+str(len(message.payload))+" bytes)")
message.timestamp = time.time()
if message.qos == 0:
self._callback_mutex.acquire()
if self.on_message:
self._in_callback = True
self.on_message(self, self._userdata, message)
self._in_callback = False
self._callback_mutex.release()
return MOSQ_ERR_SUCCESS
elif message.qos == 1:
rc = self._send_puback(message.mid)
self._callback_mutex.acquire()
if self.on_message:
self._in_callback = True
self.on_message(self, self._userdata, message)
self._in_callback = False
self._callback_mutex.release()
return rc
elif message.qos == 2:
rc = self._send_pubrec(message.mid)
message.state = mosq_ms_wait_pubrel
self._message_mutex.acquire()
self._messages.append(message)
self._message_mutex.release()
return rc
else:
return MOSQ_ERR_PROTOCOL
def _handle_pubrel(self):
if self._strict_protocol:
if self._in_packet.remaining_length != 2:
return MOSQ_ERR_PROTOCOL
if len(self._in_packet.packet) != 2:
return MOSQ_ERR_PROTOCOL
mid = struct.unpack("!H", self._in_packet.packet)
mid = mid[0]
self._easy_log(MOSQ_LOG_DEBUG, "Received PUBREL (Mid: "+str(mid)+")")
self._message_mutex.acquire()
for i in range(len(self._messages)):
if self._messages[i].direction == mosq_md_in and self._messages[i].mid == mid:
# Only pass the message on if we have removed it from the queue - this
# prevents multiple callbacks for the same message.
self._callback_mutex.acquire()
if self.on_message:
self._in_callback = True
self.on_message(self, self._userdata, self._messages[i])
self._in_callback = False
self._callback_mutex.release()
self._messages.pop(i)
self._inflight_messages = self._inflight_messages - 1
if self._max_inflight_messages > 0:
rc = self._update_inflight()
if rc != MOSQ_ERR_SUCCESS:
self._message_mutex.release()
return rc
self._message_mutex.release()
return self._send_pubcomp(mid)
self._message_mutex.release()
return MOSQ_ERR_SUCCESS
def _update_inflight(self):
# Dont lock message_mutex here
for m in self._messages:
if self._inflight_messages < self._max_inflight_messages:
if m.qos > 0 and m.state == mosq_ms_invalid and m.direction == mosq_md_out:
self._inflight_messages = self._inflight_messages + 1
if m.qos == 1:
m.state = mosq_ms_wait_puback
elif m.qos == 2:
m.state = mosq_ms_wait_pubrec
rc = self._send_publish(m.mid, m.topic, m.payload, m.qos, m.retain, m.dup)
if rc != 0:
return rc
else:
return MOSQ_ERR_SUCCESS
return MOSQ_ERR_SUCCESS
def _handle_pubrec(self):
if self._strict_protocol:
if self._in_packet.remaining_length != 2:
return MOSQ_ERR_PROTOCOL
mid = struct.unpack("!H", self._in_packet.packet)
mid = mid[0]
self._easy_log(MOSQ_LOG_DEBUG, "Received PUBREC (Mid: "+str(mid)+")")
self._message_mutex.acquire()
for m in self._messages:
if m.direction == mosq_md_out and m.mid == mid:
m.state = mosq_ms_wait_pubcomp
m.timestamp = time.time()
self._message_mutex.release()
return self._send_pubrel(mid, False)
self._message_mutex.release()
return MOSQ_ERR_SUCCESS
def _handle_unsuback(self):
if self._strict_protocol:
if self._in_packet.remaining_length != 2:
return MOSQ_ERR_PROTOCOL
mid = struct.unpack("!H", self._in_packet.packet)
mid = mid[0]
self._easy_log(MOSQ_LOG_DEBUG, "Received UNSUBACK (Mid: "+str(mid)+")")
self._callback_mutex.acquire()
if self.on_unsubscribe:
self._in_callback = True
self.on_unsubscribe(self, self._userdata, mid)
self._in_callback = False
self._callback_mutex.release()
return MOSQ_ERR_SUCCESS
def _handle_pubackcomp(self, cmd):
if self._strict_protocol:
if self._in_packet.remaining_length != 2:
return MOSQ_ERR_PROTOCOL
mid = struct.unpack("!H", self._in_packet.packet)
mid = mid[0]
self._easy_log(MOSQ_LOG_DEBUG, "Received "+cmd+" (Mid: "+str(mid)+")")
self._message_mutex.acquire()
for i in range(len(self._messages)):
try:
if self._messages[i].direction == mosq_md_out and self._messages[i].mid == mid:
# Only inform the client the message has been sent once.
self._callback_mutex.acquire()
if self.on_publish:
self._in_callback = True
self.on_publish(self, self._userdata, mid)
self._in_callback = False
self._callback_mutex.release()
self._messages.pop(i)
self._inflight_messages = self._inflight_messages - 1
if self._max_inflight_messages > 0:
rc = self._update_inflight()
if rc != MOSQ_ERR_SUCCESS:
self._message_mutex.release()
return rc
self._message_mutex.release()
return MOSQ_ERR_SUCCESS
except IndexError:
# Have removed item so i>count.
# Not really an error.
pass
self._message_mutex.release()
return MOSQ_ERR_SUCCESS
def _thread_main(self):
self._thread_terminate = False
self._state_mutex.acquire()
if self._state == mosq_cs_connect_async:
self._state_mutex.release()
self.reconnect()
else:
self._state_mutex.release()
self.loop_forever()
def _tls_match_hostname(self):
cert = self._ssl.getpeercert()
san = cert.get('subjectAltName')
if san:
have_san_dns = False
for ((key, value)) in san:
if key == 'DNS':
have_san_dns = True
if value == self._host:
return
if key == 'IP Address':
have_san_dns = True
if value.lower() == self._host.lower():
return
if have_san_dns:
# Only check subject if subjectAltName dns not found.
raise ssl.SSLError('Certificate subject does not match remote hostname.')
subject = cert.get('subject')
if subject:
for ((key, value)) in subject:
if key == 'commonName':
if value.lower() == self._host.lower():
return
raise ssl.SSLError('Certificate subject does not match remote hostname.')