Files
HP_InHand_IG502/APPS_UNCOMPILED/lib/typing_extensions.py
2025-04-30 08:48:49 -05:00

2116 lines
114 KiB
Python

# uncompyle6 version 3.9.2
# Python bytecode version base 3.7.0 (3394)
# Decompiled from: Python 3.8.19 (default, Mar 20 2024, 15:27:52)
# [Clang 14.0.6 ]
# Embedded file name: /var/user/app/device_supervisorbak/device_supervisor/lib/typing_extensions.py
# Compiled at: 2024-04-18 03:12:56
# Size of source mod 2**32: 108429 bytes
import abc, collections, contextlib, sys, typing
import collections.abc as collections_abc
import operator
from typing import Generic, Callable, TypeVar, Tuple
PEP_560 = sys.version_info[None[:3]] >= (3, 7, 0)
if PEP_560:
GenericMeta = TypingMeta = type
else:
from typing import GenericMeta, TypingMeta
OLD_GENERICS = False
try:
from typing import _type_vars, _next_in_mro, _type_check
except ImportError:
OLD_GENERICS = True
try:
from typing import _subs_tree
SUBS_TREE = True
except ImportError:
SUBS_TREE = False
try:
from typing import _tp_cache
except ImportError:
def _tp_cache(x):
return x
try:
from typing import _TypingEllipsis, _TypingEmpty
except ImportError:
class _TypingEllipsis:
pass
class _TypingEmpty:
pass
def _no_slots_copy(dct):
dict_copy = dict(dct)
if "__slots__" in dict_copy:
for slot in dict_copy["__slots__"]:
dict_copy.pop(slot, None)
return dict_copy
def _check_generic(cls, parameters):
if not cls.__parameters__:
raise TypeError("%s is not a generic class" % repr(cls))
alen = len(parameters)
elen = len(cls.__parameters__)
if alen != elen:
raise TypeError("Too %s parameters for %s; actual %s, expected %s" % (
"many" if alen > elen else "few", repr(cls), alen, elen))
if hasattr(typing, "_generic_new"):
_generic_new = typing._generic_new
else:
def _generic_new(base_cls, cls, *args, **kwargs):
return (base_cls.__new__)(cls, *args, **kwargs)
if hasattr(typing, "_geqv"):
from typing import _geqv
_geqv_defined = True
else:
_geqv = None
_geqv_defined = False
if sys.version_info[None[:2]] >= (3, 6):
import _collections_abc
_check_methods_in_mro = _collections_abc._check_methods
else:
def _check_methods_in_mro(C, *methods):
mro = C.__mro__
for method in methods:
for B in mro:
if method in B.__dict__:
if B.__dict__[method] is None:
return NotImplemented
break
else:
return NotImplemented
return True
__all__ = [
'ClassVar',
'Concatenate',
'Final',
'ParamSpec',
'Type',
'ContextManager',
'Counter',
'Deque',
'DefaultDict',
'OrderedDictTypedDict',
'SupportsIndex',
'final',
'IntVar',
'Literal',
'NewType',
'overload',
'Text',
'TypeAlias',
'TypeGuard',
'TYPE_CHECKING']
HAVE_ANNOTATED = PEP_560 or SUBS_TREE
if PEP_560:
__all__.extend(["get_args", "get_origin", "get_type_hints"])
elif HAVE_ANNOTATED:
__all__.append("Annotated")
else:
HAVE_PROTOCOLS = sys.version_info[None[:3]] != (3, 5, 0)
if HAVE_PROTOCOLS:
__all__.extend(["Protocol", "runtime", "runtime_checkable"])
else:
if hasattr(typing, "NoReturn"):
NoReturn = typing.NoReturn
else:
if hasattr(typing, "_FinalTypingBase"):
class _NoReturn(typing._FinalTypingBase, _root=True):
__doc__ = "Special type indicating functions that never return.\n Example::\n\n from typing import NoReturn\n\n def stop() -> NoReturn:\n raise Exception('no way')\n\n This type is invalid in other positions, e.g., ``List[NoReturn]``\n will fail in static type checkers.\n "
__slots__ = ()
def __instancecheck__(self, obj):
raise TypeError("NoReturn cannot be used with isinstance().")
def __subclasscheck__(self, cls):
raise TypeError("NoReturn cannot be used with issubclass().")
NoReturn = _NoReturn(_root=True)
else:
class _NoReturnMeta(typing.TypingMeta):
__doc__ = "Metaclass for NoReturn"
def __new__(cls, name, bases, namespace, _root=False):
return super().__new__(cls, name, bases, namespace, _root=_root)
def __instancecheck__(self, obj):
raise TypeError("NoReturn cannot be used with isinstance().")
def __subclasscheck__(self, cls):
raise TypeError("NoReturn cannot be used with issubclass().")
class NoReturn(typing.Final, metaclass=_NoReturnMeta, _root=True):
__doc__ = "Special type indicating functions that never return.\n Example::\n\n from typing import NoReturn\n\n def stop() -> NoReturn:\n raise Exception('no way')\n\n This type is invalid in other positions, e.g., ``List[NoReturn]``\n will fail in static type checkers.\n "
__slots__ = ()
T = typing.TypeVar("T")
KT = typing.TypeVar("KT")
VT = typing.TypeVar("VT")
T_co = typing.TypeVar("T_co", covariant=True)
V_co = typing.TypeVar("V_co", covariant=True)
VT_co = typing.TypeVar("VT_co", covariant=True)
T_contra = typing.TypeVar("T_contra", contravariant=True)
if hasattr(typing, "ClassVar"):
ClassVar = typing.ClassVar
else:
if hasattr(typing, "_FinalTypingBase"):
class _ClassVar(typing._FinalTypingBase, _root=True):
__doc__ = "Special type construct to mark class variables.\n\n An annotation wrapped in ClassVar indicates that a given\n attribute is intended to be used as a class variable and\n should not be set on instances of that class. Usage::\n\n class Starship:\n stats: ClassVar[Dict[str, int]] = {} # class variable\n damage: int = 10 # instance variable\n\n ClassVar accepts only types and cannot be further subscribed.\n\n Note that ClassVar is not a class itself, and should not\n be used with isinstance() or issubclass().\n "
__slots__ = ('__type__', )
def __init__(self, tp=None, **kwds):
self.__type__ = tp
def __getitem__(self, item):
cls = type(self)
if self.__type__ is None:
return cls((typing._type_check(item, "{} accepts only single type.".format(cls.__name__[1[:None]]))),
_root=True)
raise TypeError("{} cannot be further subscripted".format(cls.__name__[1[:None]]))
def _eval_type(self, globalns, localns):
new_tp = typing._eval_type(self.__type__, globalns, localns)
if new_tp == self.__type__:
return self
return type(self)(new_tp, _root=True)
def __repr__(self):
r = super().__repr__()
if self.__type__ is not None:
r += "[{}]".format(typing._type_repr(self.__type__))
return r
def __hash__(self):
return hash((type(self).__name__, self.__type__))
def __eq__(self, other):
if not isinstance(other, _ClassVar):
return NotImplemented
if self.__type__ is not None:
return self.__type__ == other.__type__
return self is other
ClassVar = _ClassVar(_root=True)
else:
class _ClassVarMeta(typing.TypingMeta):
__doc__ = "Metaclass for ClassVar"
def __new__(cls, name, bases, namespace, tp=None, _root=False):
self = super().__new__(cls, name, bases, namespace, _root=_root)
if tp is not None:
self.__type__ = tp
return self
def __instancecheck__(self, obj):
raise TypeError("ClassVar cannot be used with isinstance().")
def __subclasscheck__(self, cls):
raise TypeError("ClassVar cannot be used with issubclass().")
def __getitem__(self, item):
cls = type(self)
if self.__type__ is not None:
raise TypeError("{} cannot be further subscripted".format(cls.__name__[1[:None]]))
param = typing._type_check(item, "{} accepts only single type.".format(cls.__name__[1[:None]]))
return cls((self.__name__), (self.__bases__), (dict(self.__dict__)),
tp=param, _root=True)
def _eval_type(self, globalns, localns):
new_tp = typing._eval_type(self.__type__, globalns, localns)
if new_tp == self.__type__:
return self
return type(self)((self.__name__), (self.__bases__), (dict(self.__dict__)),
tp=(self.__type__), _root=True)
def __repr__(self):
r = super().__repr__()
if self.__type__ is not None:
r += "[{}]".format(typing._type_repr(self.__type__))
return r
def __hash__(self):
return hash((type(self).__name__, self.__type__))
def __eq__(self, other):
if not isinstance(other, ClassVar):
return NotImplemented
if self.__type__ is not None:
return self.__type__ == other.__type__
return self is other
class ClassVar(typing.Final, metaclass=_ClassVarMeta, _root=True):
__doc__ = "Special type construct to mark class variables.\n\n An annotation wrapped in ClassVar indicates that a given\n attribute is intended to be used as a class variable and\n should not be set on instances of that class. Usage::\n\n class Starship:\n stats: ClassVar[Dict[str, int]] = {} # class variable\n damage: int = 10 # instance variable\n\n ClassVar accepts only types and cannot be further subscribed.\n\n Note that ClassVar is not a class itself, and should not\n be used with isinstance() or issubclass().\n "
__type__ = None
if hasattr(typing, "Final"):
if sys.version_info[None[:2]] >= (3, 7):
Final = typing.Final
else:
if sys.version_info[None[:2]] >= (3, 7):
class _FinalForm(typing._SpecialForm, _root=True):
def __repr__(self):
return "typing_extensions." + self._name
def __getitem__(self, parameters):
item = typing._type_check(parameters, "{} accepts only single type".format(self._name))
return _GenericAlias(self, (item,))
Final = _FinalForm("Final", doc="A special typing construct to indicate that a name\n cannot be re-assigned or overridden in a subclass.\n For example:\n\n MAX_SIZE: Final = 9000\n MAX_SIZE += 1 # Error reported by type checker\n\n class Connection:\n TIMEOUT: Final[int] = 10\n class FastConnector(Connection):\n TIMEOUT = 1 # Error reported by type checker\n\n There is no runtime checking of these properties.")
else:
if hasattr(typing, "_FinalTypingBase"):
class _Final(typing._FinalTypingBase, _root=True):
__doc__ = "A special typing construct to indicate that a name\n cannot be re-assigned or overridden in a subclass.\n For example:\n\n MAX_SIZE: Final = 9000\n MAX_SIZE += 1 # Error reported by type checker\n\n class Connection:\n TIMEOUT: Final[int] = 10\n class FastConnector(Connection):\n TIMEOUT = 1 # Error reported by type checker\n\n There is no runtime checking of these properties.\n "
__slots__ = ('__type__', )
def __init__(self, tp=None, **kwds):
self.__type__ = tp
def __getitem__(self, item):
cls = type(self)
if self.__type__ is None:
return cls((typing._type_check(item, "{} accepts only single type.".format(cls.__name__[1[:None]]))),
_root=True)
raise TypeError("{} cannot be further subscripted".format(cls.__name__[1[:None]]))
def _eval_type(self, globalns, localns):
new_tp = typing._eval_type(self.__type__, globalns, localns)
if new_tp == self.__type__:
return self
return type(self)(new_tp, _root=True)
def __repr__(self):
r = super().__repr__()
if self.__type__ is not None:
r += "[{}]".format(typing._type_repr(self.__type__))
return r
def __hash__(self):
return hash((type(self).__name__, self.__type__))
def __eq__(self, other):
if not isinstance(other, _Final):
return NotImplemented
if self.__type__ is not None:
return self.__type__ == other.__type__
return self is other
Final = _Final(_root=True)
else:
class _FinalMeta(typing.TypingMeta):
__doc__ = "Metaclass for Final"
def __new__(cls, name, bases, namespace, tp=None, _root=False):
self = super().__new__(cls, name, bases, namespace, _root=_root)
if tp is not None:
self.__type__ = tp
return self
def __instancecheck__(self, obj):
raise TypeError("Final cannot be used with isinstance().")
def __subclasscheck__(self, cls):
raise TypeError("Final cannot be used with issubclass().")
def __getitem__(self, item):
cls = type(self)
if self.__type__ is not None:
raise TypeError("{} cannot be further subscripted".format(cls.__name__[1[:None]]))
param = typing._type_check(item, "{} accepts only single type.".format(cls.__name__[1[:None]]))
return cls((self.__name__), (self.__bases__), (dict(self.__dict__)),
tp=param, _root=True)
def _eval_type(self, globalns, localns):
new_tp = typing._eval_type(self.__type__, globalns, localns)
if new_tp == self.__type__:
return self
return type(self)((self.__name__), (self.__bases__), (dict(self.__dict__)),
tp=(self.__type__), _root=True)
def __repr__(self):
r = super().__repr__()
if self.__type__ is not None:
r += "[{}]".format(typing._type_repr(self.__type__))
return r
def __hash__(self):
return hash((type(self).__name__, self.__type__))
def __eq__(self, other):
if not isinstance(other, Final):
return NotImplemented
if self.__type__ is not None:
return self.__type__ == other.__type__
return self is other
class Final(typing.Final, metaclass=_FinalMeta, _root=True):
__doc__ = "A special typing construct to indicate that a name\n cannot be re-assigned or overridden in a subclass.\n For example:\n\n MAX_SIZE: Final = 9000\n MAX_SIZE += 1 # Error reported by type checker\n\n class Connection:\n TIMEOUT: Final[int] = 10\n class FastConnector(Connection):\n TIMEOUT = 1 # Error reported by type checker\n\n There is no runtime checking of these properties.\n "
__type__ = None
if hasattr(typing, "final"):
final = typing.final
else:
def final(f):
"""This decorator can be used to indicate to type checkers that
the decorated method cannot be overridden, and decorated class
cannot be subclassed. For example:
class Base:
@final
def done(self) -> None:
...
class Sub(Base):
def done(self) -> None: # Error reported by type checker
...
@final
class Leaf:
...
class Other(Leaf): # Error reported by type checker
...
There is no runtime checking of these properties.
"""
return f
def IntVar(name):
return TypeVar(name)
if hasattr(typing, "Literal"):
Literal = typing.Literal
else:
if sys.version_info[None[:2]] >= (3, 7):
class _LiteralForm(typing._SpecialForm, _root=True):
def __repr__(self):
return "typing_extensions." + self._name
def __getitem__(self, parameters):
return _GenericAlias(self, parameters)
Literal = _LiteralForm("Literal", doc="A type that can be used to indicate to type checkers\n that the corresponding value has a value literally equivalent\n to the provided parameter. For example:\n\n var: Literal[4] = 4\n\n The type checker understands that 'var' is literally equal to\n the value 4 and no other value.\n\n Literal[...] cannot be subclassed. There is no runtime\n checking verifying that the parameter is actually a value\n instead of a type.")
else:
if hasattr(typing, "_FinalTypingBase"):
class _Literal(typing._FinalTypingBase, _root=True):
__doc__ = "A type that can be used to indicate to type checkers that the\n corresponding value has a value literally equivalent to the\n provided parameter. For example:\n\n var: Literal[4] = 4\n\n The type checker understands that 'var' is literally equal to the\n value 4 and no other value.\n\n Literal[...] cannot be subclassed. There is no runtime checking\n verifying that the parameter is actually a value instead of a type.\n "
__slots__ = ('__values__', )
def __init__(self, values=None, **kwds):
self.__values__ = values
def __getitem__(self, values):
cls = type(self)
if self.__values__ is None:
if not isinstance(values, tuple):
values = (
values,)
return cls(values, _root=True)
raise TypeError("{} cannot be further subscripted".format(cls.__name__[1[:None]]))
def _eval_type(self, globalns, localns):
return self
def __repr__(self):
r = super().__repr__()
if self.__values__ is not None:
r += "[{}]".format(", ".join(map(typing._type_repr, self.__values__)))
return r
def __hash__(self):
return hash((type(self).__name__, self.__values__))
def __eq__(self, other):
if not isinstance(other, _Literal):
return NotImplemented
if self.__values__ is not None:
return self.__values__ == other.__values__
return self is other
Literal = _Literal(_root=True)
else:
class _LiteralMeta(typing.TypingMeta):
__doc__ = "Metaclass for Literal"
def __new__(cls, name, bases, namespace, values=None, _root=False):
self = super().__new__(cls, name, bases, namespace, _root=_root)
if values is not None:
self.__values__ = values
return self
def __instancecheck__(self, obj):
raise TypeError("Literal cannot be used with isinstance().")
def __subclasscheck__(self, cls):
raise TypeError("Literal cannot be used with issubclass().")
def __getitem__(self, item):
cls = type(self)
if self.__values__ is not None:
raise TypeError("{} cannot be further subscripted".format(cls.__name__[1[:None]]))
if not isinstance(item, tuple):
item = (
item,)
return cls((self.__name__), (self.__bases__), (dict(self.__dict__)),
values=item, _root=True)
def _eval_type(self, globalns, localns):
return self
def __repr__(self):
r = super().__repr__()
if self.__values__ is not None:
r += "[{}]".format(", ".join(map(typing._type_repr, self.__values__)))
return r
def __hash__(self):
return hash((type(self).__name__, self.__values__))
def __eq__(self, other):
if not isinstance(other, Literal):
return NotImplemented
if self.__values__ is not None:
return self.__values__ == other.__values__
return self is other
class Literal(typing.Final, metaclass=_LiteralMeta, _root=True):
__doc__ = "A type that can be used to indicate to type checkers that the\n corresponding value has a value literally equivalent to the\n provided parameter. For example:\n\n var: Literal[4] = 4\n\n The type checker understands that 'var' is literally equal to the\n value 4 and no other value.\n\n Literal[...] cannot be subclassed. There is no runtime checking\n verifying that the parameter is actually a value instead of a type.\n "
__values__ = None
def _overload_dummy(*args, **kwds):
"""Helper for @overload to raise when called."""
raise NotImplementedError("You should not call an overloaded function. A series of @overload-decorated functions outside a stub module should always be followed by an implementation that is not @overload-ed.")
def overload(func):
"""Decorator for overloaded functions/methods.
In a stub file, place two or more stub definitions for the same
function in a row, each decorated with @overload. For example:
@overload
def utf8(value: None) -> None: ...
@overload
def utf8(value: bytes) -> bytes: ...
@overload
def utf8(value: str) -> bytes: ...
In a non-stub file (i.e. a regular .py file), do the same but
follow it with an implementation. The implementation should *not*
be decorated with @overload. For example:
@overload
def utf8(value: None) -> None: ...
@overload
def utf8(value: bytes) -> bytes: ...
@overload
def utf8(value: str) -> bytes: ...
def utf8(value):
# implementation goes here
"""
return _overload_dummy
if hasattr(typing, "Type"):
Type = typing.Type
else:
CT_co = typing.TypeVar("CT_co", covariant=True, bound=type)
class Type(typing.Generic[CT_co], extra=type):
__doc__ = "A special construct usable to annotate class objects.\n\n For example, suppose we have the following classes::\n\n class User: ... # Abstract base for User classes\n class BasicUser(User): ...\n class ProUser(User): ...\n class TeamUser(User): ...\n\n And a function that takes a class argument that's a subclass of\n User and returns an instance of the corresponding class::\n\n U = TypeVar('U', bound=User)\n def new_user(user_class: Type[U]) -> U:\n user = user_class()\n # (Here we could write the user object to a database)\n return user\n joe = new_user(BasicUser)\n\n At this point the type checker knows that joe has type BasicUser.\n "
__slots__ = ()
def _define_guard(type_name):
"""
Returns True if the given type isn't defined in typing but
is defined in collections_abc.
Adds the type to __all__ if the collection is found in either
typing or collection_abc.
"""
if hasattr(typing, type_name):
__all__.append(type_name)
globals()[type_name] = getattr(typing, type_name)
return False
if hasattr(collections_abc, type_name):
__all__.append(type_name)
return True
return False
class _ExtensionsGenericMeta(GenericMeta):
def __subclasscheck__(self, subclass):
"""This mimics a more modern GenericMeta.__subclasscheck__() logic
(that does not have problems with recursion) to work around interactions
between collections, typing, and typing_extensions on older
versions of Python, see https://github.com/python/typing/issues/501.
"""
if sys.version_info[None[:3]] >= (3, 5, 3) or sys.version_info[None[:3]] < (3,
5,
0):
if self.__origin__ is not None:
if sys._getframe(1).f_globals["__name__"] not in ('abc', 'functools'):
raise TypeError("Parameterized generics cannot be used with class or instance checks")
return False
else:
return self.__extra__ or super().__subclasscheck__(subclass)
res = self.__extra__.__subclasshook__(subclass)
if res is not NotImplemented:
return res
if self.__extra__ in subclass.__mro__:
return True
for scls in self.__extra__.__subclasses__():
if isinstance(scls, GenericMeta):
continue
if issubclass(subclass, scls):
return True
return False
if _define_guard("Awaitable"):
class Awaitable(typing.Generic[T_co], metaclass=_ExtensionsGenericMeta, extra=collections_abc.Awaitable):
__slots__ = ()
elif _define_guard("Coroutine"):
class Coroutine(Awaitable[V_co], typing.Generic[(T_co, T_contra, V_co)], metaclass=_ExtensionsGenericMeta, extra=collections_abc.Coroutine):
__slots__ = ()
elif _define_guard("AsyncIterable"):
class AsyncIterable(typing.Generic[T_co], metaclass=_ExtensionsGenericMeta, extra=collections_abc.AsyncIterable):
__slots__ = ()
if _define_guard("AsyncIterator"):
class AsyncIterator(AsyncIterable[T_co], metaclass=_ExtensionsGenericMeta, extra=collections_abc.AsyncIterator):
__slots__ = ()
if hasattr(typing, "Deque"):
Deque = typing.Deque
else:
if _geqv_defined:
class Deque(collections.deque, typing.MutableSequence[T], metaclass=_ExtensionsGenericMeta, extra=collections.deque):
__slots__ = ()
def __new__(cls, *args, **kwds):
if _geqv(cls, Deque):
return (collections.deque)(*args, **kwds)
return _generic_new(collections.deque, cls, *args, **kwds)
else:
class Deque(collections.deque, typing.MutableSequence[T], metaclass=_ExtensionsGenericMeta, extra=collections.deque):
__slots__ = ()
def __new__(cls, *args, **kwds):
if cls._gorg is Deque:
return (collections.deque)(*args, **kwds)
return _generic_new(collections.deque, cls, *args, **kwds)
if hasattr(typing, "ContextManager"):
ContextManager = typing.ContextManager
elif hasattr(contextlib, "AbstractContextManager"):
class ContextManager(typing.Generic[T_co], metaclass=_ExtensionsGenericMeta, extra=contextlib.AbstractContextManager):
__slots__ = ()
else:
class ContextManager(typing.Generic[T_co]):
__slots__ = ()
def __enter__(self):
return self
@abc.abstractmethod
def __exit__(self, exc_type, exc_value, traceback):
pass
@classmethod
def __subclasshook__(cls, C):
if cls is ContextManager:
if any(("__enter__" in B.__dict__ for B in C.__mro__)):
if any(("__exit__" in B.__dict__ for B in C.__mro__)):
return True
return NotImplemented
if hasattr(typing, "AsyncContextManager"):
AsyncContextManager = typing.AsyncContextManager
__all__.append("AsyncContextManager")
else:
if hasattr(contextlib, "AbstractAsyncContextManager"):
class AsyncContextManager(typing.Generic[T_co], metaclass=_ExtensionsGenericMeta, extra=contextlib.AbstractAsyncContextManager):
__slots__ = ()
__all__.append("AsyncContextManager")
else:
if sys.version_info[None[:2]] >= (3, 5):
exec('\nclass AsyncContextManager(typing.Generic[T_co]):\n __slots__ = ()\n\n async def __aenter__(self):\n return self\n\n @abc.abstractmethod\n async def __aexit__(self, exc_type, exc_value, traceback):\n return None\n\n @classmethod\n def __subclasshook__(cls, C):\n if cls is AsyncContextManager:\n return _check_methods_in_mro(C, "__aenter__", "__aexit__")\n return NotImplemented\n\n__all__.append(\'AsyncContextManager\')\n')
else:
if hasattr(typing, "DefaultDict"):
DefaultDict = typing.DefaultDict
else:
if _geqv_defined:
class DefaultDict(collections.defaultdict, typing.MutableMapping[(KT, VT)], metaclass=_ExtensionsGenericMeta, extra=collections.defaultdict):
__slots__ = ()
def __new__(cls, *args, **kwds):
if _geqv(cls, DefaultDict):
return (collections.defaultdict)(*args, **kwds)
return _generic_new(collections.defaultdict, cls, *args, **kwds)
else:
class DefaultDict(collections.defaultdict, typing.MutableMapping[(KT, VT)], metaclass=_ExtensionsGenericMeta, extra=collections.defaultdict):
__slots__ = ()
def __new__(cls, *args, **kwds):
if cls._gorg is DefaultDict:
return (collections.defaultdict)(*args, **kwds)
return _generic_new(collections.defaultdict, cls, *args, **kwds)
if hasattr(typing, "OrderedDict"):
OrderedDict = typing.OrderedDict
else:
if (3, 7, 0) <= sys.version_info[None[:3]] < (3, 7, 2):
OrderedDict = typing._alias(collections.OrderedDict, (KT, VT))
else:
if _geqv_defined:
class OrderedDict(collections.OrderedDict, typing.MutableMapping[(KT, VT)], metaclass=_ExtensionsGenericMeta, extra=collections.OrderedDict):
__slots__ = ()
def __new__(cls, *args, **kwds):
if _geqv(cls, OrderedDict):
return (collections.OrderedDict)(*args, **kwds)
return _generic_new(collections.OrderedDict, cls, *args, **kwds)
else:
class OrderedDict(collections.OrderedDict, typing.MutableMapping[(KT, VT)], metaclass=_ExtensionsGenericMeta, extra=collections.OrderedDict):
__slots__ = ()
def __new__(cls, *args, **kwds):
if cls._gorg is OrderedDict:
return (collections.OrderedDict)(*args, **kwds)
return _generic_new(collections.OrderedDict, cls, *args, **kwds)
if hasattr(typing, "Counter"):
Counter = typing.Counter
else:
if (3, 5, 0) <= sys.version_info[None[:3]] <= (3, 5, 1):
assert _geqv_defined
_TInt = typing.TypeVar("_TInt")
class _CounterMeta(typing.GenericMeta):
__doc__ = "Metaclass for Counter"
def __getitem__(self, item):
return super().__getitem__((item, int))
class Counter(collections.Counter, typing.Dict[(T, int)], metaclass=_CounterMeta, extra=collections.Counter):
__slots__ = ()
def __new__(cls, *args, **kwds):
if _geqv(cls, Counter):
return (collections.Counter)(*args, **kwds)
return _generic_new(collections.Counter, cls, *args, **kwds)
else:
if _geqv_defined:
class Counter(collections.Counter, typing.Dict[(T, int)], metaclass=_ExtensionsGenericMeta, extra=collections.Counter):
__slots__ = ()
def __new__(cls, *args, **kwds):
if _geqv(cls, Counter):
return (collections.Counter)(*args, **kwds)
return _generic_new(collections.Counter, cls, *args, **kwds)
else:
class Counter(collections.Counter, typing.Dict[(T, int)], metaclass=_ExtensionsGenericMeta, extra=collections.Counter):
__slots__ = ()
def __new__(cls, *args, **kwds):
if cls._gorg is Counter:
return (collections.Counter)(*args, **kwds)
return _generic_new(collections.Counter, cls, *args, **kwds)
if hasattr(typing, "ChainMap"):
ChainMap = typing.ChainMap
__all__.append("ChainMap")
else:
if hasattr(collections, "ChainMap"):
if _geqv_defined:
class ChainMap(collections.ChainMap, typing.MutableMapping[(KT, VT)], metaclass=_ExtensionsGenericMeta, extra=collections.ChainMap):
__slots__ = ()
def __new__(cls, *args, **kwds):
if _geqv(cls, ChainMap):
return (collections.ChainMap)(*args, **kwds)
return _generic_new(collections.ChainMap, cls, *args, **kwds)
else:
class ChainMap(collections.ChainMap, typing.MutableMapping[(KT, VT)], metaclass=_ExtensionsGenericMeta, extra=collections.ChainMap):
__slots__ = ()
def __new__(cls, *args, **kwds):
if cls._gorg is ChainMap:
return (collections.ChainMap)(*args, **kwds)
return _generic_new(collections.ChainMap, cls, *args, **kwds)
__all__.append("ChainMap")
elif _define_guard("AsyncGenerator"):
class AsyncGenerator(AsyncIterator[T_co], typing.Generic[(T_co, T_contra)], metaclass=_ExtensionsGenericMeta, extra=collections_abc.AsyncGenerator):
__slots__ = ()
else:
if hasattr(typing, "NewType"):
NewType = typing.NewType
else:
def NewType(name, tp):
"""NewType creates simple unique types with almost zero
runtime overhead. NewType(name, tp) is considered a subtype of tp
by static type checkers. At runtime, NewType(name, tp) returns
a dummy function that simply returns its argument. Usage::
UserId = NewType('UserId', int)
def name_by_id(user_id: UserId) -> str:
...
UserId('user') # Fails type check
name_by_id(42) # Fails type check
name_by_id(UserId(42)) # OK
num = UserId(5) + 1 # type: int
"""
def new_type(x):
return x
new_type.__name__ = name
new_type.__supertype__ = tp
return new_type
if hasattr(typing, "Text"):
Text = typing.Text
else:
Text = str
if hasattr(typing, "TYPE_CHECKING"):
TYPE_CHECKING = typing.TYPE_CHECKING
else:
TYPE_CHECKING = False
def _gorg(cls):
"""This function exists for compatibility with old typing versions."""
assert isinstance(cls, GenericMeta)
if hasattr(cls, "_gorg"):
return cls._gorg
while cls.__origin__ is not None:
cls = cls.__origin__
return cls
if OLD_GENERICS:
def _next_in_mro(cls):
"""This function exists for compatibility with old typing versions."""
next_in_mro = object
for i, c in enumerate(cls.__mro__[None[:-1]]):
if isinstance(c, GenericMeta) and _gorg(c) is Generic:
next_in_mro = cls.__mro__[i + 1]
return next_in_mro
_PROTO_WHITELIST = [
'Callable', 'Awaitable',
'Iterable',
'Iterator', 'AsyncIterable', 'AsyncIterator',
'Hashable',
'Sized', 'Container', 'Collection', 'Reversible',
'ContextManager',
'AsyncContextManager']
def _get_protocol_attrs(cls):
attrs = set()
for base in cls.__mro__[None[:-1]]:
if base.__name__ in ('Protocol', 'Generic'):
continue
annotations = getattr(base, "__annotations__", {})
for attr in list(base.__dict__.keys()) + list(annotations.keys()):
if attr.startswith("_abc_") or attr not in ('__abstractmethods__',
'__annotations__',
'__weakref__', '_is_protocol',
'_is_runtime_protocol',
'__dict__', '__args__',
'__slots__', '__next_in_mro__',
'__parameters__',
'__origin__', '__orig_bases__',
'__extra__', '__tree_hash__',
'__doc__', '__subclasshook__',
'__init__', '__new__',
'__module__', '_MutableMapping__marker',
'_gorg'):
attrs.add(attr)
return attrs
def _is_callable_members_only(cls):
return all((callable(getattr(cls, attr, None)) for attr in _get_protocol_attrs(cls)))
if hasattr(typing, "Protocol"):
Protocol = typing.Protocol
else:
if HAVE_PROTOCOLS and not PEP_560:
def _no_init(self, *args, **kwargs):
if type(self)._is_protocol:
raise TypeError("Protocols cannot be instantiated")
class _ProtocolMeta(GenericMeta):
__doc__ = "Internal metaclass for Protocol.\n\n This exists so Protocol classes can be generic without deriving\n from Generic.\n "
if not OLD_GENERICS:
def __new__(cls, name, bases, namespace, tvars=None, args=None, origin=None, extra=None, orig_bases=None):
if not extra is None:
raise AssertionError
else:
if tvars is not None:
assert origin is not None
assert all((isinstance(t, TypeVar) for t in tvars)), tvars
else:
tvars = _type_vars(bases)
gvars = None
for base in bases:
if base is Generic:
raise TypeError("Cannot inherit from plain Generic")
if isinstance(base, GenericMeta):
if base.__origin__ in (Generic, Protocol):
if gvars is not None:
raise TypeError("Cannot inherit from Generic[...] or Protocol[...] multiple times.")
gvars = base.__parameters__
if gvars is None:
gvars = tvars
else:
tvarset = set(tvars)
gvarset = set(gvars)
if not tvarset <= gvarset:
raise TypeError("Some type variables (%s) are not listed in %s[%s]" % (
", ".join((str(t) for t in tvars if t not in gvarset)),
"Generic" if any((b.__origin__ is Generic for b in bases)) else "Protocol",
", ".join((str(g) for g in gvars))))
tvars = gvars
initial_bases = bases
if extra is not None:
if type(extra) is abc.ABCMeta and extra not in bases:
bases = (
extra,) + bases
bases = tuple((_gorg(b) if isinstance(b, GenericMeta) else b for b in bases))
if any((isinstance(b, GenericMeta) and b is not Generic for b in bases)):
bases = tuple((b for b in bases if b is not Generic))
namespace.update({'__origin__':origin, '__extra__':extra})
self = super(GenericMeta, cls).__new__(cls, name, bases, namespace, _root=True)
super(GenericMeta, self).__setattr__("_gorg", self if not origin else _gorg(origin))
self.__parameters__ = tvars
self.__args__ = tuple((... if a is _TypingEllipsis else () if a is _TypingEmpty else a for a in args)) if args else None
self.__next_in_mro__ = _next_in_mro(self)
if orig_bases is None:
self.__orig_bases__ = initial_bases
else:
if origin is not None:
self._abc_registry = origin._abc_registry
self._abc_cache = origin._abc_cache
if hasattr(self, "_subs_tree"):
self.__tree_hash__ = hash(self._subs_tree()) if origin else super(GenericMeta, self).__hash__()
return self
def __init__(cls, *args, **kwargs):
(super().__init__)(*args, **kwargs)
if not cls.__dict__.get("_is_protocol", None):
cls._is_protocol = any((b is Protocol or isinstance(b, _ProtocolMeta) and b.__origin__ is Protocol for b in cls.__bases__))
if cls._is_protocol:
for base in cls.__mro__[1[:None]]:
if base in (object, Generic) or base.__module__ == "collections.abc":
raise base.__name__ in _PROTO_WHITELIST or isinstance(base, TypingMeta) and base._is_protocol or isinstance(base, GenericMeta) and base.__origin__ is Generic or TypeError("Protocols can only inherit from other protocols, got %r" % base)
cls.__init__ = _no_init
def _proto_hook(other):
if not cls.__dict__.get("_is_protocol", None):
return NotImplemented
if not isinstance(other, type):
raise TypeError("issubclass() arg 1 must be a class")
for attr in _get_protocol_attrs(cls):
for base in other.__mro__:
if attr in base.__dict__:
if base.__dict__[attr] is None:
return NotImplemented
break
annotations = getattr(base, "__annotations__", {})
if isinstance(annotations, typing.Mapping) and attr in annotations and isinstance(other, _ProtocolMeta) and other._is_protocol:
break
else:
return NotImplemented
return True
if "__subclasshook__" not in cls.__dict__:
cls.__subclasshook__ = _proto_hook
def __instancecheck__(self, instance):
if not getattr(self, "_is_protocol", False) or _is_callable_members_only(self):
if issubclass(instance.__class__, self):
return True
elif self._is_protocol and all((hasattr(instance, attr) and (not callable(getattr(self, attr, None)) or getattr(instance, attr) is not None) for attr in _get_protocol_attrs(self))):
return True
return super(GenericMeta, self).__instancecheck__(instance)
def __subclasscheck__(self, cls):
if self.__origin__ is not None:
if sys._getframe(1).f_globals["__name__"] not in ('abc',
'functools'):
raise TypeError("Parameterized generics cannot be used with class or instance checks")
else:
return False
if self.__dict__.get("_is_protocol", None):
if not self.__dict__.get("_is_runtime_protocol", None):
if sys._getframe(1).f_globals["__name__"] in ('abc',
'functools',
'typing'):
return False
raise TypeError("Instance and class checks can only be used with @runtime protocols")
if self.__dict__.get("_is_runtime_protocol", None) and not _is_callable_members_only(self):
if sys._getframe(1).f_globals["__name__"] in ('abc',
'functools',
'typing'):
return super(GenericMeta, self).__subclasscheck__(cls)
raise TypeError("Protocols with non-method members don't support issubclass()")
return super(GenericMeta, self).__subclasscheck__(cls)
if not OLD_GENERICS:
@_tp_cache
def __getitem__(self, params):
if not isinstance(params, tuple):
params = (
params,)
elif not params:
if _gorg(self) is not Tuple:
raise TypeError("Parameter list to %s[...] cannot be empty" % self.__qualname__)
else:
msg = "Parameters to generic types must be types."
params = tuple((_type_check(p, msg) for p in params))
if self in (Generic, Protocol):
if not all((isinstance(p, TypeVar) for p in params)):
raise TypeError("Parameters to %r[...] must all be type variables" % self)
if len(set(params)) != len(params):
raise TypeError("Parameters to %r[...] must all be unique" % self)
tvars = params
args = params
else:
if self in (Tuple, Callable):
tvars = _type_vars(params)
args = params
else:
if self.__origin__ in (Generic, Protocol):
raise TypeError("Cannot subscript already-subscripted %s" % repr(self))
else:
_check_generic(self, params)
tvars = _type_vars(params)
args = params
prepend = (self,) if self.__origin__ is None else ()
return self.__class__((self.__name__), (prepend + self.__bases__),
(_no_slots_copy(self.__dict__)),
tvars=tvars,
args=args,
origin=self,
extra=(self.__extra__),
orig_bases=(self.__orig_bases__))
class Protocol(metaclass=_ProtocolMeta):
__doc__ = "Base class for protocol classes. Protocol classes are defined as::\n\n class Proto(Protocol):\n def meth(self) -> int:\n ...\n\n Such classes are primarily used with static type checkers that recognize\n structural subtyping (static duck-typing), for example::\n\n class C:\n def meth(self) -> int:\n return 0\n\n def func(x: Proto) -> int:\n return x.meth()\n\n func(C()) # Passes static type check\n\n See PEP 544 for details. Protocol classes decorated with\n @typing_extensions.runtime act as simple-minded runtime protocol that checks\n only the presence of given attributes, ignoring their type signatures.\n\n Protocol classes can be generic, they are defined as::\n\n class GenProto({bases}):\n def meth(self) -> T:\n ...\n "
__slots__ = ()
_is_protocol = True
def __new__(cls, *args, **kwds):
if _gorg(cls) is Protocol:
raise TypeError("Type Protocol cannot be instantiated; it can be used only as a base class")
if OLD_GENERICS:
return _generic_new(_next_in_mro(cls), cls, *args, **kwds)
return _generic_new(cls.__next_in_mro__, cls, *args, **kwds)
if Protocol.__doc__ is not None:
Protocol.__doc__ = Protocol.__doc__.format(bases=("Protocol, Generic[T]" if OLD_GENERICS else "Protocol[T]"))
else:
if PEP_560:
from typing import _type_check, _GenericAlias, _collect_type_vars
def _no_init(self, *args, **kwargs):
if type(self)._is_protocol:
raise TypeError("Protocols cannot be instantiated")
class _ProtocolMeta(abc.ABCMeta):
def __instancecheck__(cls, instance):
if not getattr(cls, "_is_protocol", False) or _is_callable_members_only(cls):
if issubclass(instance.__class__, cls):
return True
elif cls._is_protocol and all((hasattr(instance, attr) and (not callable(getattr(cls, attr, None)) or getattr(instance, attr) is not None) for attr in _get_protocol_attrs(cls))):
return True
return super().__instancecheck__(instance)
class Protocol(metaclass=_ProtocolMeta):
__doc__ = "Base class for protocol classes. Protocol classes are defined as::\n\n class Proto(Protocol):\n def meth(self) -> int:\n ...\n\n Such classes are primarily used with static type checkers that recognize\n structural subtyping (static duck-typing), for example::\n\n class C:\n def meth(self) -> int:\n return 0\n\n def func(x: Proto) -> int:\n return x.meth()\n\n func(C()) # Passes static type check\n\n See PEP 544 for details. Protocol classes decorated with\n @typing_extensions.runtime act as simple-minded runtime protocol that checks\n only the presence of given attributes, ignoring their type signatures.\n\n Protocol classes can be generic, they are defined as::\n\n class GenProto(Protocol[T]):\n def meth(self) -> T:\n ...\n "
__slots__ = ()
_is_protocol = True
def __new__(cls, *args, **kwds):
if cls is Protocol:
raise TypeError("Type Protocol cannot be instantiated; it can only be used as a base class")
return super().__new__(cls)
@_tp_cache
def __class_getitem__(cls, params):
if not isinstance(params, tuple):
params = (
params,)
elif not params:
if cls is not Tuple:
raise TypeError("Parameter list to {}[...] cannot be empty".format(cls.__qualname__))
else:
msg = "Parameters to generic types must be types."
params = tuple((_type_check(p, msg) for p in params))
if cls is Protocol:
if not all((isinstance(p, TypeVar) for p in params)):
i = 0
while isinstance(params[i], TypeVar):
i += 1
raise TypeError("Parameters to Protocol[...] must all be type variables. Parameter {} is {}".format(i + 1, params[i]))
if len(set(params)) != len(params):
raise TypeError("Parameters to Protocol[...] must all be unique")
else:
_check_generic(cls, params)
return _GenericAlias(cls, params)
def __init_subclass__(cls, *args, **kwargs):
tvars = []
if "__orig_bases__" in cls.__dict__:
error = Generic in cls.__orig_bases__
else:
error = Generic in cls.__bases__
if error:
raise TypeError("Cannot inherit from plain Generic")
if "__orig_bases__" in cls.__dict__:
tvars = _collect_type_vars(cls.__orig_bases__)
gvars = None
for base in cls.__orig_bases__:
if isinstance(base, _GenericAlias):
if base.__origin__ in (Generic, Protocol):
the_base = "Generic" if base.__origin__ is Generic else "Protocol"
if gvars is not None:
raise TypeError("Cannot inherit from Generic[...] and/or Protocol[...] multiple types.")
gvars = base.__parameters__
if gvars is None:
gvars = tvars
else:
tvarset = set(tvars)
gvarset = set(gvars)
if not tvarset <= gvarset:
s_vars = ", ".join((str(t) for t in tvars if t not in gvarset))
s_args = ", ".join((str(g) for g in gvars))
raise TypeError("Some type variables ({}) are not listed in {}[{}]".format(s_vars, the_base, s_args))
tvars = gvars
else:
cls.__parameters__ = tuple(tvars)
if not cls.__dict__.get("_is_protocol", None):
cls._is_protocol = any((b is Protocol for b in cls.__bases__))
def _proto_hook(other):
if not cls.__dict__.get("_is_protocol", None):
return NotImplemented
elif not getattr(cls, "_is_runtime_protocol", False):
if sys._getframe(2).f_globals["__name__"] in ('abc',
'functools'):
return NotImplemented
raise TypeError("Instance and class checks can only be used with @runtime protocols")
if not _is_callable_members_only(cls):
if sys._getframe(2).f_globals["__name__"] in ('abc',
'functools'):
return NotImplemented
raise TypeError("Protocols with non-method members don't support issubclass()")
assert isinstance(other, type), "issubclass() arg 1 must be a class"
for attr in _get_protocol_attrs(cls):
for base in other.__mro__:
if attr in base.__dict__:
if base.__dict__[attr] is None:
return NotImplemented
break
annotations = getattr(base, "__annotations__", {})
if isinstance(annotations, typing.Mapping) and attr in annotations and isinstance(other, _ProtocolMeta) and other._is_protocol:
break
else:
return NotImplemented
return True
if "__subclasshook__" not in cls.__dict__:
cls.__subclasshook__ = _proto_hook
return cls._is_protocol or None
for base in cls.__bases__:
if base in (object, Generic) or base.__module__ == "collections.abc" and base.__name__ in _PROTO_WHITELIST or isinstance(base, _ProtocolMeta):
raise base._is_protocol or TypeError("Protocols can only inherit from other protocols, got %r" % base)
cls.__init__ = _no_init
if hasattr(typing, "runtime_checkable"):
runtime_checkable = typing.runtime_checkable
else:
if HAVE_PROTOCOLS:
def runtime_checkable(cls):
"""Mark a protocol class as a runtime protocol, so that it
can be used with isinstance() and issubclass(). Raise TypeError
if applied to a non-protocol class.
This allows a simple-minded structural check very similar to the
one-offs in collections.abc such as Hashable.
"""
if not (isinstance(cls, _ProtocolMeta) and cls._is_protocol):
raise TypeError("@runtime_checkable can be only applied to protocol classes, got %r" % cls)
cls._is_runtime_protocol = True
return cls
if HAVE_PROTOCOLS:
runtime = runtime_checkable
if hasattr(typing, "SupportsIndex"):
SupportsIndex = typing.SupportsIndex
else:
if HAVE_PROTOCOLS:
@runtime_checkable
class SupportsIndex(Protocol):
__slots__ = ()
@abc.abstractmethod
def __index__(self) -> int:
pass
if sys.version_info >= (3, 9, 2):
TypedDict = typing.TypedDict
else:
def _check_fails(cls, other):
try:
if sys._getframe(1).f_globals["__name__"] not in ('abc', 'functools',
'typing'):
raise TypeError("TypedDict does not support instance and class checks")
except (AttributeError, ValueError):
pass
return False
def _dict_new(*args, **kwargs):
if not args:
raise TypeError("TypedDict.__new__(): not enough arguments")
_, args = args[0], args[1[:None]]
return dict(*args, **kwargs)
_dict_new.__text_signature__ = "($cls, _typename, _fields=None, /, **kwargs)"
def _typeddict_new(*args, total=True, **kwargs):
if not args:
raise TypeError("TypedDict.__new__(): not enough arguments")
else:
_, args = args[0], args[1[:None]]
if args:
typename, args = args[0], args[1[:None]]
else:
if "_typename" in kwargs:
typename = kwargs.pop("_typename")
import warnings
warnings.warn("Passing '_typename' as keyword argument is deprecated", DeprecationWarning,
stacklevel=2)
else:
raise TypeError("TypedDict.__new__() missing 1 required positional argument: '_typename'")
if args:
try:
fields, = args
except ValueError:
raise TypeError("TypedDict.__new__() takes from 2 to 3 positional arguments but {} were given".format(len(args) + 2))
else:
if "_fields" in kwargs:
if len(kwargs) == 1:
fields = kwargs.pop("_fields")
import warnings
warnings.warn("Passing '_fields' as keyword argument is deprecated", DeprecationWarning,
stacklevel=2)
else:
fields = None
elif fields is None:
fields = kwargs
else:
if kwargs:
raise TypeError("TypedDict takes either a dict or keyword arguments, but not both")
ns = {"__annotations__": (dict(fields))}
try:
ns["__module__"] = sys._getframe(1).f_globals.get("__name__", "__main__")
except (AttributeError, ValueError):
pass
return _TypedDictMeta(typename, (), ns, total=total)
_typeddict_new.__text_signature__ = "($cls, _typename, _fields=None, /, *, total=True, **kwargs)"
class _TypedDictMeta(type):
def __init__(cls, name, bases, ns, total=True):
super(_TypedDictMeta, cls).__init__(name, bases, ns)
def __new__Parse error at or near `LOAD_DICTCOMP' instruction at offset 80
__instancecheck__ = __subclasscheck__ = _check_fails
TypedDict = _TypedDictMeta("TypedDict", (dict,), {})
TypedDict.__module__ = __name__
TypedDict.__doc__ = "A simple typed name space. At runtime it is equivalent to a plain dict.\n\n TypedDict creates a dictionary type that expects all of its\n instances to have a certain set of keys, with each key\n associated with a value of a consistent type. This expectation\n is not checked at runtime but is only enforced by type checkers.\n Usage::\n\n class Point2D(TypedDict):\n x: int\n y: int\n label: str\n\n a: Point2D = {'x': 1, 'y': 2, 'label': 'good'} # OK\n b: Point2D = {'z': 3, 'label': 'bad'} # Fails type check\n\n assert Point2D(x=1, y=2, label='first') == dict(x=1, y=2, label='first')\n\n The type info can be accessed via the Point2D.__annotations__ dict, and\n the Point2D.__required_keys__ and Point2D.__optional_keys__ frozensets.\n TypedDict supports two additional equivalent forms::\n\n Point2D = TypedDict('Point2D', x=int, y=int, label=str)\n Point2D = TypedDict('Point2D', {'x': int, 'y': int, 'label': str})\n\n The class syntax is only supported in Python 3.6+, while two other\n syntax forms work for Python 2.7 and 3.2+\n "
if hasattr(typing, "Annotated"):
Annotated = typing.Annotated
get_type_hints = typing.get_type_hints
_AnnotatedAlias = typing._AnnotatedAlias
else:
if PEP_560:
class _AnnotatedAlias(typing._GenericAlias, _root=True):
__doc__ = "Runtime representation of an annotated type.\n\n At its core 'Annotated[t, dec1, dec2, ...]' is an alias for the type 't'\n with extra annotations. The alias behaves like a normal typing alias,\n instantiating is the same as instantiating the underlying type, binding\n it to types is also the same.\n "
def __init__(self, origin, metadata):
if isinstance(origin, _AnnotatedAlias):
metadata = origin.__metadata__ + metadata
origin = origin.__origin__
super().__init__(origin, origin)
self.__metadata__ = metadata
def copy_with(self, params):
assert len(params) == 1
new_type = params[0]
return _AnnotatedAlias(new_type, self.__metadata__)
def __repr__(self):
return "typing_extensions.Annotated[{}, {}]".format(typing._type_repr(self.__origin__), ", ".join((repr(a) for a in self.__metadata__)))
def __reduce__(self):
return (
operator.getitem,
(
Annotated, (self.__origin__,) + self.__metadata__))
def __eq__(self, other):
if not isinstance(other, _AnnotatedAlias):
return NotImplemented
if self.__origin__ != other.__origin__:
return False
return self.__metadata__ == other.__metadata__
def __hash__(self):
return hash((self.__origin__, self.__metadata__))
class Annotated:
__doc__ = "Add context specific metadata to a type.\n\n Example: Annotated[int, runtime_check.Unsigned] indicates to the\n hypothetical runtime_check module that this type is an unsigned int.\n Every other consumer of this type can ignore this metadata and treat\n this type as int.\n\n The first argument to Annotated must be a valid type (and will be in\n the __origin__ field), the remaining arguments are kept as a tuple in\n the __extra__ field.\n\n Details:\n\n - It's an error to call `Annotated` with less than two arguments.\n - Nested Annotated are flattened::\n\n Annotated[Annotated[T, Ann1, Ann2], Ann3] == Annotated[T, Ann1, Ann2, Ann3]\n\n - Instantiating an annotated type is equivalent to instantiating the\n underlying type::\n\n Annotated[C, Ann1](5) == C(5)\n\n - Annotated can be used as a generic type alias::\n\n Optimized = Annotated[T, runtime.Optimize()]\n Optimized[int] == Annotated[int, runtime.Optimize()]\n\n OptimizedList = Annotated[List[T], runtime.Optimize()]\n OptimizedList[int] == Annotated[List[int], runtime.Optimize()]\n "
__slots__ = ()
def __new__(cls, *args, **kwargs):
raise TypeError("Type Annotated cannot be instantiated.")
@_tp_cache
def __class_getitem__(cls, params):
if not isinstance(params, tuple) or len(params) < 2:
raise TypeError("Annotated[...] should be used with at least two arguments (a type and an annotation).")
msg = "Annotated[t, ...]: t must be a type."
origin = typing._type_check(params[0], msg)
metadata = tuple(params[1[:None]])
return _AnnotatedAlias(origin, metadata)
def __init_subclass__(cls, *args, **kwargs):
raise TypeError("Cannot subclass {}.Annotated".format(cls.__module__))
def _strip_annotations(t):
"""Strips the annotations from a given type.
"""
if isinstance(t, _AnnotatedAlias):
return _strip_annotations(t.__origin__)
if isinstance(t, typing._GenericAlias):
stripped_args = tuple((_strip_annotations(a) for a in t.__args__))
if stripped_args == t.__args__:
return t
res = t.copy_with(stripped_args)
res._special = t._special
return res
return t
def get_type_hints(obj, globalns=None, localns=None, include_extras=False):
"""Return type hints for an object.
This is often the same as obj.__annotations__, but it handles
forward references encoded as string literals, adds Optional[t] if a
default value equal to None is set and recursively replaces all
'Annotated[T, ...]' with 'T' (unless 'include_extras=True').
The argument may be a module, class, method, or function. The annotations
are returned as a dictionary. For classes, annotations include also
inherited members.
TypeError is raised if the argument is not of a type that can contain
annotations, and an empty dictionary is returned if no annotations are
present.
BEWARE -- the behavior of globalns and localns is counterintuitive
(unless you are familiar with how eval() and exec() work). The
search order is locals first, then globals.
- If no dict arguments are passed, an attempt is made to use the
globals from obj (or the respective module's globals for classes),
and these are also used as the locals. If the object does not appear
to have globals, an empty dictionary is used.
- If one dict argument is passed, it is used for both globals and
locals.
- If two dict arguments are passed, they specify globals and
locals, respectively.
"""
hint = typing.get_type_hints(obj, globalns=globalns, localns=localns)
if include_extras:
return hint
return {k: _strip_annotations(t) for k, t in hint.items()}
else:
if HAVE_ANNOTATED:
def _is_dunder(name):
"""Returns True if name is a __dunder_variable_name__."""
return len(name) > 4 and name.startswith("__") and name.endswith("__")
class AnnotatedMeta(typing.GenericMeta):
__doc__ = "Metaclass for Annotated"
def __new__(cls, name, bases, namespace, **kwargs):
if any((b is not object for b in bases)):
raise TypeError("Cannot subclass " + str(Annotated))
return (super().__new__)(cls, name, bases, namespace, **kwargs)
@property
def __metadata__(self):
return self._subs_tree()[2]
def _tree_repr(self, tree):
cls, origin, metadata = tree
if not isinstance(origin, tuple):
tp_repr = typing._type_repr(origin)
else:
tp_repr = origin[0]._tree_repr(origin)
metadata_reprs = ", ".join((repr(arg) for arg in metadata))
return "%s[%s, %s]" % (cls, tp_repr, metadata_reprs)
def _subs_tree(self, tvars=None, args=None):
if self is Annotated:
return Annotated
res = super()._subs_tree(tvars=tvars, args=args)
if isinstance(res[1], tuple):
if res[1][0] is Annotated:
sub_tp = res[1][1]
sub_annot = res[1][2]
return (Annotated, sub_tp, sub_annot + res[2])
return res
def _get_cons(self):
"""Return the class used to create instance of this type."""
if self.__origin__ is None:
raise TypeError("Cannot get the underlying type of a non-specialized Annotated type.")
tree = self._subs_tree()
while isinstance(tree, tuple) and tree[0] is Annotated:
tree = tree[1]
if isinstance(tree, tuple):
return tree[0]
return tree
@_tp_cache
def __getitem__(self, params):
if not isinstance(params, tuple):
params = (
params,)
elif self.__origin__ is not None:
return super().__getitem__(params)
if not isinstance(params, tuple) or len(params) < 2:
raise TypeError("Annotated[...] should be instantiated with at least two arguments (a type and an annotation).")
else:
msg = "Annotated[t, ...]: t must be a type."
tp = typing._type_check(params[0], msg)
metadata = tuple(params[1[:None]])
return self.__class__((self.__name__),
(self.__bases__),
(_no_slots_copy(self.__dict__)),
tvars=(_type_vars((tp,))),
args=(
tp, metadata),
origin=self)
def __call__(self, *args, **kwargs):
cons = self._get_cons()
result = cons(*args, **kwargs)
try:
result.__orig_class__ = self
except AttributeError:
pass
return result
def __getattr__(self, attr):
if self.__origin__ is not None:
if not _is_dunder(attr):
return getattr(self._get_cons(), attr)
raise AttributeError(attr)
def __setattr__(self, attr, value):
if _is_dunder(attr) or attr.startswith("_abc_"):
super().__setattr__(attr, value)
else:
if self.__origin__ is None:
raise AttributeError(attr)
else:
setattr(self._get_cons(), attr, value)
def __instancecheck__(self, obj):
raise TypeError("Annotated cannot be used with isinstance().")
def __subclasscheck__(self, cls):
raise TypeError("Annotated cannot be used with issubclass().")
class Annotated(metaclass=AnnotatedMeta):
__doc__ = "Add context specific metadata to a type.\n\n Example: Annotated[int, runtime_check.Unsigned] indicates to the\n hypothetical runtime_check module that this type is an unsigned int.\n Every other consumer of this type can ignore this metadata and treat\n this type as int.\n\n The first argument to Annotated must be a valid type, the remaining\n arguments are kept as a tuple in the __metadata__ field.\n\n Details:\n\n - It's an error to call `Annotated` with less than two arguments.\n - Nested Annotated are flattened::\n\n Annotated[Annotated[T, Ann1, Ann2], Ann3] == Annotated[T, Ann1, Ann2, Ann3]\n\n - Instantiating an annotated type is equivalent to instantiating the\n underlying type::\n\n Annotated[C, Ann1](5) == C(5)\n\n - Annotated can be used as a generic type alias::\n\n Optimized = Annotated[T, runtime.Optimize()]\n Optimized[int] == Annotated[int, runtime.Optimize()]\n\n OptimizedList = Annotated[List[T], runtime.Optimize()]\n OptimizedList[int] == Annotated[List[int], runtime.Optimize()]\n "
if sys.version_info[None[:2]] >= (3, 10):
get_origin = typing.get_origin
get_args = typing.get_args
else:
if PEP_560:
from typing import _GenericAlias
try:
from typing import _BaseGenericAlias
except ImportError:
_BaseGenericAlias = _GenericAlias
try:
from typing import GenericAlias
except ImportError:
GenericAlias = _GenericAlias
def get_origin(tp):
"""Get the unsubscripted version of a type.
This supports generic types, Callable, Tuple, Union, Literal, Final, ClassVar
and Annotated. Return None for unsupported types. Examples::
get_origin(Literal[42]) is Literal
get_origin(int) is None
get_origin(ClassVar[int]) is ClassVar
get_origin(Generic) is Generic
get_origin(Generic[T]) is Generic
get_origin(Union[T, int]) is Union
get_origin(List[Tuple[T, T]][int]) == list
get_origin(P.args) is P
"""
if isinstance(tp, _AnnotatedAlias):
return Annotated
if isinstance(tp, (_GenericAlias, GenericAlias, _BaseGenericAlias,
ParamSpecArgs, ParamSpecKwargs)):
return tp.__origin__
if tp is Generic:
return Generic
def get_args(tp):
"""Get type arguments with all substitutions performed.
For unions, basic simplifications used by Union constructor are performed.
Examples::
get_args(Dict[str, int]) == (str, int)
get_args(int) == ()
get_args(Union[int, Union[T, int], str][int]) == (int, str)
get_args(Union[int, Tuple[T, int]][str]) == (int, Tuple[str, int])
get_args(Callable[[], T][int]) == ([], int)
"""
if isinstance(tp, _AnnotatedAlias):
return (
tp.__origin__,) + tp.__metadata__
if isinstance(tp, (_GenericAlias, GenericAlias)):
if getattr(tp, "_special", False):
return ()
res = tp.__args__
if get_origin(tp) is collections.abc.Callable:
if res[0] is not Ellipsis:
res = (
list(res[None[:-1]]), res[-1])
return res
return ()
if hasattr(typing, "TypeAlias"):
TypeAlias = typing.TypeAlias
else:
if sys.version_info[None[:2]] >= (3, 9):
class _TypeAliasForm(typing._SpecialForm, _root=True):
def __repr__(self):
return "typing_extensions." + self._name
@_TypeAliasForm
def TypeAlias(self, parameters):
"""Special marker indicating that an assignment should
be recognized as a proper type alias definition by type
checkers.
For example::
Predicate: TypeAlias = Callable[..., bool]
It's invalid when used anywhere except as in the example above.
"""
raise TypeError("{} is not subscriptable".format(self))
else:
if sys.version_info[None[:2]] >= (3, 7):
class _TypeAliasForm(typing._SpecialForm, _root=True):
def __repr__(self):
return "typing_extensions." + self._name
TypeAlias = _TypeAliasForm("TypeAlias", doc="Special marker indicating that an assignment should\n be recognized as a proper type alias definition by type\n checkers.\n\n For example::\n\n Predicate: TypeAlias = Callable[..., bool]\n\n It's invalid when used anywhere except as in the example\n above.")
else:
if hasattr(typing, "_FinalTypingBase"):
class _TypeAliasMeta(typing.TypingMeta):
__doc__ = "Metaclass for TypeAlias"
def __repr__(self):
return "typing_extensions.TypeAlias"
class _TypeAliasBase(typing._FinalTypingBase, metaclass=_TypeAliasMeta, _root=True):
__doc__ = "Special marker indicating that an assignment should\n be recognized as a proper type alias definition by type\n checkers.\n\n For example::\n\n Predicate: TypeAlias = Callable[..., bool]\n\n It's invalid when used anywhere except as in the example above.\n "
__slots__ = ()
def __instancecheck__(self, obj):
raise TypeError("TypeAlias cannot be used with isinstance().")
def __subclasscheck__(self, cls):
raise TypeError("TypeAlias cannot be used with issubclass().")
def __repr__(self):
return "typing_extensions.TypeAlias"
TypeAlias = _TypeAliasBase(_root=True)
else:
class _TypeAliasMeta(typing.TypingMeta):
__doc__ = "Metaclass for TypeAlias"
def __instancecheck__(self, obj):
raise TypeError("TypeAlias cannot be used with isinstance().")
def __subclasscheck__(self, cls):
raise TypeError("TypeAlias cannot be used with issubclass().")
def __call__(self, *args, **kwargs):
raise TypeError("Cannot instantiate TypeAlias")
class TypeAlias(metaclass=_TypeAliasMeta, _root=True):
__doc__ = "Special marker indicating that an assignment should\n be recognized as a proper type alias definition by type\n checkers.\n\n For example::\n\n Predicate: TypeAlias = Callable[..., bool]\n\n It's invalid when used anywhere except as in the example above.\n "
__slots__ = ()
if hasattr(typing, "ParamSpecArgs"):
ParamSpecArgs = typing.ParamSpecArgs
ParamSpecKwargs = typing.ParamSpecKwargs
else:
class _Immutable:
__doc__ = "Mixin to indicate that object should not be copied."
__slots__ = ()
def __copy__(self):
return self
def __deepcopy__(self, memo):
return self
class ParamSpecArgs(_Immutable):
__doc__ = "The args for a ParamSpec object.\n\n Given a ParamSpec object P, P.args is an instance of ParamSpecArgs.\n\n ParamSpecArgs objects have a reference back to their ParamSpec:\n\n P.args.__origin__ is P\n\n This type is meant for runtime introspection and has no special meaning to\n static type checkers.\n "
def __init__(self, origin):
self.__origin__ = origin
def __repr__(self):
return "{}.args".format(self.__origin__.__name__)
class ParamSpecKwargs(_Immutable):
__doc__ = "The kwargs for a ParamSpec object.\n\n Given a ParamSpec object P, P.kwargs is an instance of ParamSpecKwargs.\n\n ParamSpecKwargs objects have a reference back to their ParamSpec:\n\n P.kwargs.__origin__ is P\n\n This type is meant for runtime introspection and has no special meaning to\n static type checkers.\n "
def __init__(self, origin):
self.__origin__ = origin
def __repr__(self):
return "{}.kwargs".format(self.__origin__.__name__)
if hasattr(typing, "ParamSpec"):
ParamSpec = typing.ParamSpec
else:
class ParamSpec(list):
__doc__ = "Parameter specification variable.\n\n Usage::\n\n P = ParamSpec('P')\n\n Parameter specification variables exist primarily for the benefit of static\n type checkers. They are used to forward the parameter types of one\n callable to another callable, a pattern commonly found in higher order\n functions and decorators. They are only valid when used in ``Concatenate``,\n or s the first argument to ``Callable``. In Python 3.10 and higher,\n they are also supported in user-defined Generics at runtime.\n See class Generic for more information on generic types. An\n example for annotating a decorator::\n\n T = TypeVar('T')\n P = ParamSpec('P')\n\n def add_logging(f: Callable[P, T]) -> Callable[P, T]:\n '''A type-safe decorator to add logging to a function.'''\n def inner(*args: P.args, **kwargs: P.kwargs) -> T:\n logging.info(f'{f.__name__} was called')\n return f(*args, **kwargs)\n return inner\n\n @add_logging\n def add_two(x: float, y: float) -> float:\n '''Add two numbers together.'''\n return x + y\n\n Parameter specification variables defined with covariant=True or\n contravariant=True can be used to declare covariant or contravariant\n generic types. These keyword arguments are valid, but their actual semantics\n are yet to be decided. See PEP 612 for details.\n\n Parameter specification variables can be introspected. e.g.:\n\n P.__name__ == 'T'\n P.__bound__ == None\n P.__covariant__ == False\n P.__contravariant__ == False\n\n Note that only parameter specification variables defined in global scope can\n be pickled.\n "
@property
def args(self):
return ParamSpecArgs(self)
@property
def kwargs(self):
return ParamSpecKwargs(self)
def __init__(self, name, *, bound=None, covariant=False, contravariant=False):
super().__init__([self])
self.__name__ = name
self.__covariant__ = bool(covariant)
self.__contravariant__ = bool(contravariant)
if bound:
self.__bound__ = typing._type_check(bound, "Bound must be a type.")
else:
self.__bound__ = None
try:
def_mod = sys._getframe(1).f_globals.get("__name__", "__main__")
except (AttributeError, ValueError):
def_mod = None
if def_mod != "typing_extensions":
self.__module__ = def_mod
def __repr__(self):
if self.__covariant__:
prefix = "+"
else:
if self.__contravariant__:
prefix = "-"
else:
prefix = "~"
return prefix + self.__name__
def __hash__(self):
return object.__hash__(self)
def __eq__(self, other):
return self is other
def __reduce__(self):
return self.__name__
def __call__(self, *args, **kwargs):
pass
class _ConcatenateGenericAlias(list):
def __init__(self, origin, args):
super().__init__(args)
self.__origin__ = origin
self.__args__ = args
def __repr__(self):
_type_repr = typing._type_repr
return "{origin}[{args}]".format(origin=(_type_repr(self.__origin__)),
args=(", ".join((_type_repr(arg) for arg in self.__args__))))
def __hash__(self):
return hash((self.__origin__, self.__args__))
@_tp_cache
def _concatenate_getitem(self, parameters):
if parameters == ():
raise TypeError("Cannot take a Concatenate of no types.")
elif not isinstance(parameters, tuple):
parameters = (
parameters,)
assert isinstance(parameters[-1], ParamSpec), "The last parameter to Concatenate should be a ParamSpec variable."
msg = "Concatenate[arg, ...]: each arg must be a type."
parameters = tuple((typing._type_check(p, msg) for p in parameters))
return _ConcatenateGenericAlias(self, parameters)
if hasattr(typing, "Concatenate"):
Concatenate = typing.Concatenate
_ConcatenateGenericAlias = typing._ConcatenateGenericAlias
else:
if sys.version_info[None[:2]] >= (3, 9):
@_TypeAliasForm
def Concatenate(self, parameters):
"""Used in conjunction with ``ParamSpec`` and ``Callable`` to represent a
higher order function which adds, removes or transforms parameters of a
callable.
For example::
Callable[Concatenate[int, P], int]
See PEP 612 for detailed information.
"""
return _concatenate_getitem(self, parameters)
else:
if sys.version_info[None[:2]] >= (3, 7):
class _ConcatenateForm(typing._SpecialForm, _root=True):
def __repr__(self):
return "typing_extensions." + self._name
def __getitem__(self, parameters):
return _concatenate_getitem(self, parameters)
Concatenate = _ConcatenateForm("Concatenate", doc="Used in conjunction with ``ParamSpec`` and ``Callable`` to represent a\n higher order function which adds, removes or transforms parameters of a\n callable.\n\n For example::\n\n Callable[Concatenate[int, P], int]\n\n See PEP 612 for detailed information.\n ")
else:
if hasattr(typing, "_FinalTypingBase"):
class _ConcatenateAliasMeta(typing.TypingMeta):
__doc__ = "Metaclass for Concatenate."
def __repr__(self):
return "typing_extensions.Concatenate"
class _ConcatenateAliasBase(typing._FinalTypingBase, metaclass=_ConcatenateAliasMeta, _root=True):
__doc__ = "Used in conjunction with ``ParamSpec`` and ``Callable`` to represent a\n higher order function which adds, removes or transforms parameters of a\n callable.\n\n For example::\n\n Callable[Concatenate[int, P], int]\n\n See PEP 612 for detailed information.\n "
__slots__ = ()
def __instancecheck__(self, obj):
raise TypeError("Concatenate cannot be used with isinstance().")
def __subclasscheck__(self, cls):
raise TypeError("Concatenate cannot be used with issubclass().")
def __repr__(self):
return "typing_extensions.Concatenate"
def __getitem__(self, parameters):
return _concatenate_getitem(self, parameters)
Concatenate = _ConcatenateAliasBase(_root=True)
else:
class _ConcatenateAliasMeta(typing.TypingMeta):
__doc__ = "Metaclass for Concatenate."
def __instancecheck__(self, obj):
raise TypeError("TypeAlias cannot be used with isinstance().")
def __subclasscheck__(self, cls):
raise TypeError("TypeAlias cannot be used with issubclass().")
def __call__(self, *args, **kwargs):
raise TypeError("Cannot instantiate TypeAlias")
def __getitem__(self, parameters):
return _concatenate_getitem(self, parameters)
class Concatenate(metaclass=_ConcatenateAliasMeta, _root=True):
__doc__ = "Used in conjunction with ``ParamSpec`` and ``Callable`` to represent a\n higher order function which adds, removes or transforms parameters of a\n callable.\n\n For example::\n\n Callable[Concatenate[int, P], int]\n\n See PEP 612 for detailed information.\n "
__slots__ = ()
if hasattr(typing, "TypeGuard"):
TypeGuard = typing.TypeGuard
else:
if sys.version_info[None[:2]] >= (3, 9):
class _TypeGuardForm(typing._SpecialForm, _root=True):
def __repr__(self):
return "typing_extensions." + self._name
@_TypeGuardForm
def TypeGuard(self, parameters):
"""Special typing form used to annotate the return type of a user-defined
type guard function. ``TypeGuard`` only accepts a single type argument.
At runtime, functions marked this way should return a boolean.
``TypeGuard`` aims to benefit *type narrowing* -- a technique used by static
type checkers to determine a more precise type of an expression within a
program's code flow. Usually type narrowing is done by analyzing
conditional code flow and applying the narrowing to a block of code. The
conditional expression here is sometimes referred to as a "type guard".
Sometimes it would be convenient to use a user-defined boolean function
as a type guard. Such a function should use ``TypeGuard[...]`` as its
return type to alert static type checkers to this intention.
Using ``-> TypeGuard`` tells the static type checker that for a given
function:
1. The return value is a boolean.
2. If the return value is ``True``, the type of its argument
is the type inside ``TypeGuard``.
For example::
def is_str(val: Union[str, float]):
# "isinstance" type guard
if isinstance(val, str):
# Type of ``val`` is narrowed to ``str``
...
else:
# Else, type of ``val`` is narrowed to ``float``.
...
Strict type narrowing is not enforced -- ``TypeB`` need not be a narrower
form of ``TypeA`` (it can even be a wider form) and this may lead to
type-unsafe results. The main reason is to allow for things like
narrowing ``List[object]`` to ``List[str]`` even though the latter is not
a subtype of the former, since ``List`` is invariant. The responsibility of
writing type-safe type guards is left to the user.
``TypeGuard`` also works with type variables. For more information, see
PEP 647 (User-Defined Type Guards).
"""
item = typing._type_check(parameters, "{} accepts only single type.".format(self))
return _GenericAlias(self, (item,))
else:
if sys.version_info[None[:2]] >= (3, 7):
class _TypeGuardForm(typing._SpecialForm, _root=True):
def __repr__(self):
return "typing_extensions." + self._name
def __getitem__(self, parameters):
item = typing._type_check(parameters, "{} accepts only a single type".format(self._name))
return _GenericAlias(self, (item,))
TypeGuard = _TypeGuardForm("TypeGuard",
doc='Special typing form used to annotate the return type of a user-defined\n type guard function. ``TypeGuard`` only accepts a single type argument.\n At runtime, functions marked this way should return a boolean.\n\n ``TypeGuard`` aims to benefit *type narrowing* -- a technique used by static\n type checkers to determine a more precise type of an expression within a\n program\'s code flow. Usually type narrowing is done by analyzing\n conditional code flow and applying the narrowing to a block of code. The\n conditional expression here is sometimes referred to as a "type guard".\n\n Sometimes it would be convenient to use a user-defined boolean function\n as a type guard. Such a function should use ``TypeGuard[...]`` as its\n return type to alert static type checkers to this intention.\n\n Using ``-> TypeGuard`` tells the static type checker that for a given\n function:\n\n 1. The return value is a boolean.\n 2. If the return value is ``True``, the type of its argument\n is the type inside ``TypeGuard``.\n\n For example::\n\n def is_str(val: Union[str, float]):\n # "isinstance" type guard\n if isinstance(val, str):\n # Type of ``val`` is narrowed to ``str``\n ...\n else:\n # Else, type of ``val`` is narrowed to ``float``.\n ...\n\n Strict type narrowing is not enforced -- ``TypeB`` need not be a narrower\n form of ``TypeA`` (it can even be a wider form) and this may lead to\n type-unsafe results. The main reason is to allow for things like\n narrowing ``List[object]`` to ``List[str]`` even though the latter is not\n a subtype of the former, since ``List`` is invariant. The responsibility of\n writing type-safe type guards is left to the user.\n\n ``TypeGuard`` also works with type variables. For more information, see\n PEP 647 (User-Defined Type Guards).\n ')
else:
if hasattr(typing, "_FinalTypingBase"):
class _TypeGuard(typing._FinalTypingBase, _root=True):
__doc__ = 'Special typing form used to annotate the return type of a user-defined\n type guard function. ``TypeGuard`` only accepts a single type argument.\n At runtime, functions marked this way should return a boolean.\n\n ``TypeGuard`` aims to benefit *type narrowing* -- a technique used by static\n type checkers to determine a more precise type of an expression within a\n program\'s code flow. Usually type narrowing is done by analyzing\n conditional code flow and applying the narrowing to a block of code. The\n conditional expression here is sometimes referred to as a "type guard".\n\n Sometimes it would be convenient to use a user-defined boolean function\n as a type guard. Such a function should use ``TypeGuard[...]`` as its\n return type to alert static type checkers to this intention.\n\n Using ``-> TypeGuard`` tells the static type checker that for a given\n function:\n\n 1. The return value is a boolean.\n 2. If the return value is ``True``, the type of its argument\n is the type inside ``TypeGuard``.\n\n For example::\n\n def is_str(val: Union[str, float]):\n # "isinstance" type guard\n if isinstance(val, str):\n # Type of ``val`` is narrowed to ``str``\n ...\n else:\n # Else, type of ``val`` is narrowed to ``float``.\n ...\n\n Strict type narrowing is not enforced -- ``TypeB`` need not be a narrower\n form of ``TypeA`` (it can even be a wider form) and this may lead to\n type-unsafe results. The main reason is to allow for things like\n narrowing ``List[object]`` to ``List[str]`` even though the latter is not\n a subtype of the former, since ``List`` is invariant. The responsibility of\n writing type-safe type guards is left to the user.\n\n ``TypeGuard`` also works with type variables. For more information, see\n PEP 647 (User-Defined Type Guards).\n '
__slots__ = ('__type__', )
def __init__(self, tp=None, **kwds):
self.__type__ = tp
def __getitem__(self, item):
cls = type(self)
if self.__type__ is None:
return cls((typing._type_check(item, "{} accepts only a single type.".format(cls.__name__[1[:None]]))),
_root=True)
raise TypeError("{} cannot be further subscripted".format(cls.__name__[1[:None]]))
def _eval_type(self, globalns, localns):
new_tp = typing._eval_type(self.__type__, globalns, localns)
if new_tp == self.__type__:
return self
return type(self)(new_tp, _root=True)
def __repr__(self):
r = super().__repr__()
if self.__type__ is not None:
r += "[{}]".format(typing._type_repr(self.__type__))
return r
def __hash__(self):
return hash((type(self).__name__, self.__type__))
def __eq__(self, other):
if not isinstance(other, _TypeGuard):
return NotImplemented
if self.__type__ is not None:
return self.__type__ == other.__type__
return self is other
TypeGuard = _TypeGuard(_root=True)
else:
class _TypeGuardMeta(typing.TypingMeta):
__doc__ = "Metaclass for TypeGuard"
def __new__(cls, name, bases, namespace, tp=None, _root=False):
self = super().__new__(cls, name, bases, namespace, _root=_root)
if tp is not None:
self.__type__ = tp
return self
def __instancecheck__(self, obj):
raise TypeError("TypeGuard cannot be used with isinstance().")
def __subclasscheck__(self, cls):
raise TypeError("TypeGuard cannot be used with issubclass().")
def __getitem__(self, item):
cls = type(self)
if self.__type__ is not None:
raise TypeError("{} cannot be further subscripted".format(cls.__name__[1[:None]]))
param = typing._type_check(item, "{} accepts only single type.".format(cls.__name__[1[:None]]))
return cls((self.__name__), (self.__bases__), (dict(self.__dict__)),
tp=param, _root=True)
def _eval_type(self, globalns, localns):
new_tp = typing._eval_type(self.__type__, globalns, localns)
if new_tp == self.__type__:
return self
return type(self)((self.__name__), (self.__bases__), (dict(self.__dict__)),
tp=(self.__type__), _root=True)
def __repr__(self):
r = super().__repr__()
if self.__type__ is not None:
r += "[{}]".format(typing._type_repr(self.__type__))
return r
def __hash__(self):
return hash((type(self).__name__, self.__type__))
def __eq__(self, other):
if not hasattr(other, "__type__"):
return NotImplemented
if self.__type__ is not None:
return self.__type__ == other.__type__
return self is other
class TypeGuard(typing.Final, metaclass=_TypeGuardMeta, _root=True):
__doc__ = 'Special typing form used to annotate the return type of a user-defined\n type guard function. ``TypeGuard`` only accepts a single type argument.\n At runtime, functions marked this way should return a boolean.\n\n ``TypeGuard`` aims to benefit *type narrowing* -- a technique used by static\n type checkers to determine a more precise type of an expression within a\n program\'s code flow. Usually type narrowing is done by analyzing\n conditional code flow and applying the narrowing to a block of code. The\n conditional expression here is sometimes referred to as a "type guard".\n\n Sometimes it would be convenient to use a user-defined boolean function\n as a type guard. Such a function should use ``TypeGuard[...]`` as its\n return type to alert static type checkers to this intention.\n\n Using ``-> TypeGuard`` tells the static type checker that for a given\n function:\n\n 1. The return value is a boolean.\n 2. If the return value is ``True``, the type of its argument\n is the type inside ``TypeGuard``.\n\n For example::\n\n def is_str(val: Union[str, float]):\n # "isinstance" type guard\n if isinstance(val, str):\n # Type of ``val`` is narrowed to ``str``\n ...\n else:\n # Else, type of ``val`` is narrowed to ``float``.\n ...\n\n Strict type narrowing is not enforced -- ``TypeB`` need not be a narrower\n form of ``TypeA`` (it can even be a wider form) and this may lead to\n type-unsafe results. The main reason is to allow for things like\n narrowing ``List[object]`` to ``List[str]`` even though the latter is not\n a subtype of the former, since ``List`` is invariant. The responsibility of\n writing type-safe type guards is left to the user.\n\n ``TypeGuard`` also works with type variables. For more information, see\n PEP 647 (User-Defined Type Guards).\n '
__type__ = None