Files
GoldenCheetah/src/ANT.cpp
Mark Liversedge fc51026aa7 Native ANT+ Part 2 - Garmin USB1 Stick on Windows
This patch provides support for Garmin USB1 sticks under
Windows. Since the device does not present a serial port
this code uses the USBXpress API from SiLabs that the
Garmin device uses.

Support for USB2 sticks is pending.

To build you will need to download and install the SiLabs
development kit from http://www.silabs.com/products/mcu/Pages/USBXpress.aspx
and set USBXPRESS_INSTALL appropriately in gcconfig.pri. I
have provided instructions in gcconfig.pri.in.

At runtime the SiUSBXp.dll will need to be in the path, I will
assume that Gareth will fix up the windows installer for this, but
for now just copy the file manually.

Tested with a GARMIN USB1 stick on Windows 7 with SRM, Garmin HR and
a GSC-10 dual speed/cadence device.

There are other minor fixes to the ANTMessage code in this patch
related to decoding of calibration messages.
2011-03-07 13:39:17 +00:00

746 lines
20 KiB
C++

/*
* Copyright (c) 2009 Mark Rages
* Copyright (c) 2011 Mark Liversedge (liversedge@gmail.com)
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc., 51
* Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
//------------------------------------------------------------------------
// This code has been created by folding the ANT.cpp source with
// the Quarqd source provided by Mark Rages and the Serial device
// code from Computrainer.cpp
//------------------------------------------------------------------------
#include "ANT.h"
#include "ANTMessage.h"
#include <QMessageBox>
#include <QTime>
#include <QProgressDialog>
#include <QtDebug>
#include "RealtimeData.h"
/* Control status */
#define ANT_RUNNING 0x01
#define ANT_PAUSED 0x02
// network key
const unsigned char ANT::key[8] = { 0xB9, 0xA5, 0x21, 0xFB, 0xBD, 0x72, 0xC3, 0x45 };
// supported sensor types
const ant_sensor_type_t ANT::ant_sensor_types[] = {
{ ANTChannel::CHANNEL_TYPE_UNUSED, 0, 0, 0, 0, "Unused", '?' },
{ ANTChannel::CHANNEL_TYPE_HR, ANT_SPORT_HR_PERIOD, ANT_SPORT_HR_TYPE,
ANT_SPORT_FREQUENCY, ANT_SPORT_NETWORK_NUMBER, "Heartrate", 'h' },
{ ANTChannel::CHANNEL_TYPE_POWER, ANT_SPORT_POWER_PERIOD, ANT_SPORT_POWER_TYPE,
ANT_SPORT_FREQUENCY, ANT_SPORT_NETWORK_NUMBER, "Power", 'p' },
{ ANTChannel::CHANNEL_TYPE_SPEED, ANT_SPORT_SPEED_PERIOD, ANT_SPORT_SPEED_TYPE,
ANT_SPORT_FREQUENCY, ANT_SPORT_NETWORK_NUMBER, "Speed", 's' },
{ ANTChannel::CHANNEL_TYPE_CADENCE, ANT_SPORT_CADENCE_PERIOD, ANT_SPORT_CADENCE_TYPE,
ANT_SPORT_FREQUENCY, ANT_SPORT_NETWORK_NUMBER, "Cadence", 'c' },
{ ANTChannel::CHANNEL_TYPE_SandC, ANT_SPORT_SandC_PERIOD, ANT_SPORT_SandC_TYPE,
ANT_SPORT_FREQUENCY, ANT_SPORT_NETWORK_NUMBER, "Speed + Cadence", 'd' },
{ ANTChannel::CHANNEL_TYPE_QUARQ, ANT_QUARQ_PERIOD, ANT_QUARQ_TYPE,
ANT_QUARQ_FREQUENCY, DEFAULT_NETWORK_NUMBER, "Quarq Channel", 'Q' },
{ ANTChannel::CHANNEL_TYPE_FAST_QUARQ, ANT_FAST_QUARQ_PERIOD, ANT_FAST_QUARQ_TYPE,
ANT_FAST_QUARQ_FREQUENCY, DEFAULT_NETWORK_NUMBER, "Fast Quarq", 'q' },
{ ANTChannel::CHANNEL_TYPE_FAST_QUARQ_NEW, ANT_FAST_QUARQ_PERIOD, ANT_FAST_QUARQ_TYPE_WAS,
ANT_FAST_QUARQ_FREQUENCY, DEFAULT_NETWORK_NUMBER, "Fast Quarq New", 'n' },
{ ANTChannel::CHANNEL_TYPE_GUARD, 0, 0, 0, 0, "", '\0' }
};
//
// The ANT class is a worker thread, reading/writing to a local
// Garmin ANT+ serial device. It maintains local state and telemetry.
// It is controlled by an ANTController, which starts/stops and will
// request telemetry and send commands to assign channels etc
//
// ANTController sits between the RealtimeWindow and the ANT worker
// thread and is part of the GC architecture NOT related to the
// hardware controller.
//
ANT::ANT(QObject *parent, DeviceConfiguration *devConf) : QThread(parent)
{
// device status and settings
Status=0;
deviceFilename = devConf->portSpec;
baud=115200;
// state machine
state = ST_WAIT_FOR_SYNC;
length = bytes = 0;
checksum = ANT_SYNC_BYTE;
// ant ids - may not be configured of course
if (devConf->deviceProfile.length())
antIDs = devConf->deviceProfile.split(",");
else
antIDs.clear();
// setup the channels
for (int i=0; i<ANT_MAX_CHANNELS; i++) antChannel[i] = new ANTChannel(i, this);
}
ANT::~ANT()
{
}
void ANT::setDevice(QString x)
{
deviceFilename = x;
}
void ANT::setBaud(int x)
{
baud = x;
}
/*======================================================================
* Main thread functions; start, stop etc
*====================================================================*/
void ANT::run()
{
//qDebug() << "Starting ANT thread...";
int status; // control commands from controller
bool isPortOpen = false;
Status = ANT_RUNNING;
QString strBuf;
if (openPort() == 0) {
isPortOpen = true;
sendMessage(ANTMessage::resetSystem());
sendMessage(ANTMessage::setNetworkKey(1, key));
// pair with specified devices on next available channel
if (antIDs.count()) {
foreach(QString antid, antIDs) {
if (antid.length()) {
unsigned char c = antid.at(antid.length()-1).toLatin1();
int ch_type = interpretSuffix(c);
int device_number = antid.mid(0, antid.length()-1).toInt();
addDevice(device_number, ch_type, -1);
}
}
} else {
// not configured, just pair with whatever you can find
addDevice(0, ANTChannel::CHANNEL_TYPE_POWER, 0);
addDevice(0, ANTChannel::CHANNEL_TYPE_SandC, 1);
addDevice(0, ANTChannel::CHANNEL_TYPE_CADENCE, 2);
addDevice(0, ANTChannel::CHANNEL_TYPE_HR, 3);
}
} else {
quit(0);
return;
}
while(1)
{
// read more bytes from the device
uint8_t byte;
if (rawRead(&byte, 1) > 0) receiveByte((unsigned char)byte);
//else msleep(5);
//----------------------------------------------------------------------
// LISTEN TO CONTROLLER FOR COMMANDS
//----------------------------------------------------------------------
pvars.lock();
status = this->Status;
pvars.unlock();
/* time to shut up shop */
if (!(status&ANT_RUNNING)) {
// time to stop!
quit(0);
return;
}
}
}
int
ANT::start()
{
QThread::start();
return 0;
}
int
ANT::restart()
{
int status;
// get current status
pvars.lock();
status = this->Status;
pvars.unlock();
// what state are we in anyway?
if (status&ANT_RUNNING && status&ANT_PAUSED) {
status &= ~ANT_PAUSED;
pvars.lock();
this->Status = status;
pvars.unlock();
return 0; // ok its running again!
}
return 2;
}
int
ANT::pause()
{
int status;
// get current status
pvars.lock();
status = this->Status;
pvars.unlock();
if (status&ANT_PAUSED) return 2;
else if (!(status&ANT_RUNNING)) return 4;
else {
// ok we're running and not paused so lets pause
status |= ANT_PAUSED;
pvars.lock();
this->Status = status;
pvars.unlock();
return 0;
}
}
int
ANT::stop()
{
int status;
// get current status
pvars.lock();
status = this->Status;
pvars.unlock();
// what state are we in anyway?
pvars.lock();
Status = 0; // Terminate it!
pvars.unlock();
return 0;
}
int
ANT::quit(int code)
{
//qDebug()<<"Stopping ANT thread...";
// event code goes here!
closePort();
exit(code);
return 0;
}
RealtimeData
ANT::getRealtimeData()
{
return telemetry;
}
/*======================================================================
* Channel management
*====================================================================*/
// returns 1 for success, 0 for fail.
int
ANT::addDevice(int device_number, int device_type, int channel_number)
{
// if we're given a device number, then use that one
if (channel_number>-1) {
antChannel[channel_number]->close();
antChannel[channel_number]->open(device_number, device_type);
return 1;
}
// if we already have the device, then return.
for (int i=0; i<ANT_MAX_CHANNELS; i++) {
if (((antChannel[i]->channel_type & 0xf ) == device_type) &&
(antChannel[i]->device_number == device_number)) {
// send the channel found...
antChannel[i]->channelInfo();
return 1;
}
}
// look for an unused channel and use on that one
for (int i=0; i<ANT_MAX_CHANNELS; i++) {
if (antChannel[i]->channel_type == ANTChannel::CHANNEL_TYPE_UNUSED) {
antChannel[i]->open(device_number, device_type);
return 1;
}
}
// there are no unused channels. fail.
return 0;
}
// returns 1 for successfully removed, 0 for none found.
int
ANT::removeDevice(int device_number, int channel_type)
{
int i;
for (i=0; i<ANT_MAX_CHANNELS; i++) {
ANTChannel *ac = antChannel[i];
if ((ac->channel_type == channel_type) && (ac->device_number == device_number)) {
if ((ac->control_channel!=ac) && ac->control_channel)
removeDevice(device_number, ac->control_channel->channel_type);
ac->close();
ac->channel_type=ANTChannel::CHANNEL_TYPE_UNUSED;
ac->device_number=0;
ac->setId();
return 1;
}
}
// device not found.
return 0;
}
ANTChannel *
ANT::findDevice(int device_number, int channel_type)
{
int i;
for (i=0; i<ANT_MAX_CHANNELS; i++) {
if (((antChannel[i]->channel_type) == channel_type) &&
(antChannel[i]->device_number==device_number)) {
return antChannel[i];
}
}
// device not found.
return NULL;
}
int
ANT::startWaitingSearch()
{
int i;
// are any fast searches in progress? if so, then bail
for (i=0; i<ANT_MAX_CHANNELS; i++) {
if (antChannel[i]->channel_type_flags & CHANNEL_TYPE_QUICK_SEARCH) {
return 0;
}
}
// start the first slow search
for (i=0; i<ANT_MAX_CHANNELS; i++) {
if (antChannel[i]->channel_type_flags & CHANNEL_TYPE_WAITING) {
antChannel[i]->channel_type_flags &= ~CHANNEL_TYPE_WAITING;
sendMessage(ANTMessage::unassignChannel(i));
return 1;
}
}
return 0;
}
void
ANT::report()
{
for (int i=0; i<ANT_MAX_CHANNELS; i++)
antChannel[i]->channelInfo();
}
void
ANT::associateControlChannels() {
// first, unassociate all control channels
for (int i=0; i<ANT_MAX_CHANNELS; i++) antChannel[i]->control_channel=NULL;
// then, associate cinqos:
// new cinqos get their own selves for control
// old cinqos, look for an open control channel
// if found and open, associate
// elif found and not open yet, nop
// elif not found, open one
for (int i=0; i<ANT_MAX_CHANNELS; i++) {
ANTChannel *ac=antChannel[i];
switch (ac->channel_type) {
case ANTChannel::CHANNEL_TYPE_POWER:
if (ac->is_cinqo) {
if (ac->is_old_cinqo) {
ANTChannel *my_ant_channel;
my_ant_channel=findDevice(ac->device_number, ANTChannel::CHANNEL_TYPE_QUARQ);
if (!my_ant_channel) my_ant_channel=findDevice(ac->device_number, ANTChannel::CHANNEL_TYPE_FAST_QUARQ);
if (!my_ant_channel) my_ant_channel=findDevice(ac->device_number, ANTChannel::CHANNEL_TYPE_FAST_QUARQ_NEW);
if (my_ant_channel) {
if (my_ant_channel->isSearching()) {
// ignore if searching
} else {
ac->control_channel=my_ant_channel;
ac->sendCinqoSuccess();
}
} else { // no ant channel, let's start one
addDevice(ac->device_number, ANTChannel::CHANNEL_TYPE_QUARQ, -1);
}
} else { // new cinqo
ac->control_channel=ac;
ac->sendCinqoSuccess();
}
} // is_cinqo
break;
case ANTChannel::CHANNEL_TYPE_FAST_QUARQ:
case ANTChannel::CHANNEL_TYPE_FAST_QUARQ_NEW:
case ANTChannel::CHANNEL_TYPE_QUARQ:
ac->is_cinqo=1;
ac->control_channel=ac;
break;
default:
;
} // channel_type case
} // for-loop
}
// XXX device discovery for pairing to do... need to
// think about a cool way to do this.
bool
ANT::discover(DeviceConfiguration *, QProgressDialog *)
{
return false;
}
/*----------------------------------------------------------------------
* Message I/O
*--------------------------------------------------------------------*/
void
ANT::sendMessage(ANTMessage m) {
static const unsigned char padding[5] = { '\0', '\0', '\0', '\0', '\0' };
rawWrite((uint8_t*)m.data, m.length);
// this padding is important, for some reason XXX find out why?
rawWrite((uint8_t*)padding, 5);
}
void
ANT::receiveByte(unsigned char byte) {
switch (state) {
case ST_WAIT_FOR_SYNC:
if (byte == ANT_SYNC_BYTE) {
state = ST_GET_LENGTH;
checksum = ANT_SYNC_BYTE;
}
break;
case ST_GET_LENGTH:
if ((byte == 0) || (byte > ANT_MAX_LENGTH)) {
state = ST_WAIT_FOR_SYNC;
}
else {
rxMessage[ANT_OFFSET_LENGTH] = byte;
checksum ^= byte;
length = byte;
bytes = 0;
state = ST_GET_MESSAGE_ID;
}
break;
case ST_GET_MESSAGE_ID:
rxMessage[ANT_OFFSET_ID] = byte;
checksum ^= byte;
state = ST_GET_DATA;
break;
case ST_GET_DATA:
rxMessage[ANT_OFFSET_DATA + bytes] = byte;
checksum ^= byte;
if (++bytes >= length){
state = ST_VALIDATE_PACKET;
}
break;
case ST_VALIDATE_PACKET:
if (checksum == byte){
processMessage();
}
state = ST_WAIT_FOR_SYNC;
break;
}
}
//
// Pass inbound message to channel for handling
//
void
ANT::handleChannelEvent(void) {
int channel = rxMessage[ANT_OFFSET_DATA] & 0x7;
if(channel >= 0 && channel < 4) {
// handle a channel event here!
//qDebug()<<"channel event on channel:"<<channel;
antChannel[channel]->receiveMessage(rxMessage);
}
}
void
ANT::processMessage(void) {
//qDebug()<<"processing ant message"<<rxMessage[ANT_OFFSET_ID];
ANTMessage(this, rxMessage); // for debug!
switch (rxMessage[ANT_OFFSET_ID]) {
case ANT_ACK_DATA:
case ANT_BROADCAST_DATA:
case ANT_CHANNEL_STATUS:
case ANT_CHANNEL_ID:
case ANT_BURST_DATA:
handleChannelEvent();
break;
case ANT_CHANNEL_EVENT:
switch (rxMessage[ANT_OFFSET_MESSAGE_CODE]) {
case EVENT_TRANSFER_TX_FAILED:
//XXX remember last message ... ANT_SendAckMessage();
break;
case EVENT_TRANSFER_TX_COMPLETED:
// fall through
default:
handleChannelEvent();
}
break;
case ANT_VERSION:
break;
case ANT_CAPABILITIES:
break;
case ANT_SERIAL_NUMBER:
break;
default:
break;
}
}
/*======================================================================
* Serial I/O
*====================================================================*/
int ANT::closePort()
{
#ifdef WIN32
return (int)!CloseHandle(devicePort);
#else
tcflush(devicePort, TCIOFLUSH); // clear out the garbage
return close(devicePort);
#endif
}
int ANT::openPort()
{
#ifndef WIN32
// LINUX AND MAC USES TERMIO / IOCTL / STDIO
#if defined(Q_OS_MACX)
int ldisc=TTYDISC;
#else
int ldisc=N_TTY; // LINUX
#endif
if ((devicePort=open(deviceFilename.toAscii(),O_RDWR | O_NOCTTY | O_NONBLOCK)) == -1)
return errno;
tcflush(devicePort, TCIOFLUSH); // clear out the garbage
if (ioctl(devicePort, TIOCSETD, &ldisc) == -1) return errno;
// get current settings for the port
tcgetattr(devicePort, &deviceSettings);
// set raw mode i.e. ignbrk, brkint, parmrk, istrip, inlcr, igncr, icrnl, ixon
// noopost, cs8, noecho, noechonl, noicanon, noisig, noiexn
cfmakeraw(&deviceSettings);
cfsetspeed(&deviceSettings, B115200);
// further attributes
deviceSettings.c_iflag= IGNPAR;
deviceSettings.c_oflag=0;
deviceSettings.c_cflag &= (~CSIZE & ~CSTOPB);
#if defined(Q_OS_MACX)
deviceSettings.c_cflag |= (CS8 | CREAD | HUPCL | CCTS_OFLOW | CRTS_IFLOW);
#else
deviceSettings.c_cflag |= (CS8 | CREAD | HUPCL | CRTSCTS);
#endif
deviceSettings.c_lflag=0;
deviceSettings.c_cc[VMIN]=0;
deviceSettings.c_cc[VTIME]=0;
// set those attributes
if(tcsetattr(devicePort, TCSANOW, &deviceSettings) == -1) return errno;
tcgetattr(devicePort, &deviceSettings);
#else
#ifdef GC_HAVE_USBXPRESS
return USBXpress::open(&devicePort);
#else
// WINDOWS USES SET/GETCOMMSTATE AND READ/WRITEFILE
COMMTIMEOUTS timeouts; // timeout settings on serial ports
// if deviceFilename references a port above COM9
// then we need to open "\\.\COMX" not "COMX"
QString portSpec;
int portnum = deviceFilename.midRef(3).toString().toInt();
if (portnum < 10)
portSpec = deviceFilename;
else
portSpec = "\\\\.\\" + deviceFilename;
wchar_t deviceFilenameW[32]; // \\.\COM32 needs 9 characters, 32 should be enough?
MultiByteToWideChar(CP_ACP, 0, portSpec.toAscii(), -1, (LPWSTR)deviceFilenameW,
sizeof(deviceFilenameW));
// win32 commport API
devicePort = CreateFile (deviceFilenameW, GENERIC_READ|GENERIC_WRITE,
FILE_SHARE_DELETE|FILE_SHARE_WRITE|FILE_SHARE_READ, NULL, OPEN_EXISTING, 0, NULL);
if (devicePort == INVALID_HANDLE_VALUE) return -1;
if (GetCommState (devicePort, &deviceSettings) == false) return -1;
// so we've opened the comm port lets set it up for
deviceSettings.BaudRate = CBR_2400;
deviceSettings.fParity = NOPARITY;
deviceSettings.ByteSize = 8;
deviceSettings.StopBits = ONESTOPBIT;
deviceSettings.EofChar = 0x0;
deviceSettings.ErrorChar = 0x0;
deviceSettings.EvtChar = 0x0;
deviceSettings.fBinary = true;
deviceSettings.fRtsControl = RTS_CONTROL_HANDSHAKE;
deviceSettings.fOutxCtsFlow = TRUE;
if (SetCommState(devicePort, &deviceSettings) == false) {
CloseHandle(devicePort);
return -1;
}
timeouts.ReadIntervalTimeout = 0;
timeouts.ReadTotalTimeoutConstant = 1000;
timeouts.ReadTotalTimeoutMultiplier = 50;
timeouts.WriteTotalTimeoutConstant = 2000;
timeouts.WriteTotalTimeoutMultiplier = 0;
SetCommTimeouts(devicePort, &timeouts);
#endif
#endif
// success
return 0;
}
int ANT::rawWrite(uint8_t *bytes, int size) // unix!!
{
int rc=0;
#ifdef WIN32
#ifdef GC_HAVE_USBXPRESS
rc = USBXpress::write(&devicePort, bytes, size);
#else
DWORD cBytes;
rc = WriteFile(devicePort, bytes, size, &cBytes, NULL);
#endif
if (!rc) return -1;
return rc;
#else
int ibytes;
ioctl(devicePort, FIONREAD, &ibytes);
// timeouts are less critical for writing, since vols are low
rc= write(devicePort, bytes, size);
if (rc != -1) tcdrain(devicePort); // wait till its gone.
ioctl(devicePort, FIONREAD, &ibytes);
#endif
return rc;
}
int ANT::rawRead(uint8_t bytes[], int size)
{
int rc=0;
#ifdef WIN32
#ifdef GC_HAVE_USBXPRESS
return USBXpress::read(&devicePort, bytes, size);
#else
// Readfile deals with timeouts and readyread issues
DWORD cBytes;
rc = ReadFile(devicePort, bytes, size, &cBytes, NULL);
if (rc) return (int)cBytes;
else return (-1);
#endif
#else
int timeout=0, i=0;
uint8_t byte;
// read one byte at a time sleeping when no data ready
// until we timeout waiting then return error
for (i=0; i<size; i++) {
timeout =0;
rc = read(devicePort, &byte, 1);
if (rc == -1 || rc == 0) return -1; // error!
else bytes[i] = byte;
}
return i;
#endif
}
// convert 'p' 'c' etc into ANT values for device type
int ANT::interpretSuffix(char c)
{
const ant_sensor_type_t *st=ant_sensor_types;
do {
if (st->suffix==c) return st->type;
} while (++st, st->type != ANTChannel::CHANNEL_TYPE_GUARD);
return -1;
}