Files
GoldenCheetah/levmar/lmblec_core.c
Mark Liversedge d9b12d63f7 Alternative Levenberg-Marquardt algorithm
.. allows constrained fits

.. this is a GPL lib that is included into the
   source tree to avoid adding another painful
   deendency.

.. for details of the lib please see:
   http://users.ics.forth.gr/~lourakis/levmar/
2018-08-08 14:34:35 +01:00

414 lines
17 KiB
C

/////////////////////////////////////////////////////////////////////////////////
//
// Levenberg - Marquardt non-linear minimization algorithm
// Copyright (C) 2004-06 Manolis Lourakis (lourakis at ics forth gr)
// Institute of Computer Science, Foundation for Research & Technology - Hellas
// Heraklion, Crete, Greece.
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
/////////////////////////////////////////////////////////////////////////////////
/*******************************************************************************
* This file implements combined box and linear equation constraints.
*
* Note that the algorithm implementing linearly constrained minimization does
* so by a change in parameters that transforms the original program into an
* unconstrained one. To employ the same idea for implementing box & linear
* constraints would require the transformation of box constraints on the
* original parameters to box constraints for the new parameter set. This
* being impossible, a different approach is used here for finding the minimum.
* The trick is to remove the box constraints by augmenting the function to
* be fitted with penalty terms and then solve the resulting problem (which
* involves linear constrains only) with the functions in lmlec.c
*
* More specifically, for the constraint a<=x[i]<=b to hold, the term C[i]=
* (2*x[i]-(a+b))/(b-a) should be within [-1, 1]. This is enforced by adding
* the penalty term w[i]*max((C[i])^2-1, 0) to the objective function, where
* w[i] is a large weight. In the case of constraints of the form a<=x[i],
* the term C[i]=a-x[i] has to be non positive, thus the penalty term is
* w[i]*max(C[i], 0). If x[i]<=b, C[i]=x[i]-b has to be non negative and
* the penalty is w[i]*max(C[i], 0). The derivatives needed for the Jacobian
* are as follows:
* For the constraint a<=x[i]<=b: 4*(2*x[i]-(a+b))/(b-a)^2 if x[i] not in [a, b],
* 0 otherwise
* For the constraint a<=x[i]: -1 if x[i]<=a, 0 otherwise
* For the constraint x[i]<=b: 1 if b<=x[i], 0 otherwise
*
* Note that for the above to work, the weights w[i] should be large enough;
* depending on your minimization problem, the default values might need some
* tweaking (see arg "wghts" below).
*******************************************************************************/
#ifndef LM_REAL // not included by lmblec.c
#error This file should not be compiled directly!
#endif
#define __MAX__(x, y) (((x)>=(y))? (x) : (y))
#define __BC_WEIGHT__ LM_CNST(1E+04)
#define __BC_INTERVAL__ 0
#define __BC_LOW__ 1
#define __BC_HIGH__ 2
/* precision-specific definitions */
#define LEVMAR_BOX_CHECK LM_ADD_PREFIX(levmar_box_check)
#define LMBLEC_DATA LM_ADD_PREFIX(lmblec_data)
#define LMBLEC_FUNC LM_ADD_PREFIX(lmblec_func)
#define LMBLEC_JACF LM_ADD_PREFIX(lmblec_jacf)
#define LEVMAR_LEC_DER LM_ADD_PREFIX(levmar_lec_der)
#define LEVMAR_LEC_DIF LM_ADD_PREFIX(levmar_lec_dif)
#define LEVMAR_BLEC_DER LM_ADD_PREFIX(levmar_blec_der)
#define LEVMAR_BLEC_DIF LM_ADD_PREFIX(levmar_blec_dif)
#define LEVMAR_COVAR LM_ADD_PREFIX(levmar_covar)
struct LMBLEC_DATA{
LM_REAL *x, *lb, *ub, *w;
int *bctype;
void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata);
void (*jacf)(LM_REAL *p, LM_REAL *jac, int m, int n, void *adata);
void *adata;
};
/* augmented measurements */
static void LMBLEC_FUNC(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata)
{
struct LMBLEC_DATA *data=(struct LMBLEC_DATA *)adata;
int nn;
register int i, j, *typ;
register LM_REAL *lb, *ub, *w, tmp;
nn=n-m;
lb=data->lb;
ub=data->ub;
w=data->w;
typ=data->bctype;
(*(data->func))(p, hx, m, nn, data->adata);
for(i=nn, j=0; i<n; ++i, ++j){
switch(typ[j]){
case __BC_INTERVAL__:
tmp=(LM_CNST(2.0)*p[j]-(lb[j]+ub[j]))/(ub[j]-lb[j]);
hx[i]=w[j]*__MAX__(tmp*tmp-LM_CNST(1.0), LM_CNST(0.0));
break;
case __BC_LOW__:
hx[i]=w[j]*__MAX__(lb[j]-p[j], LM_CNST(0.0));
break;
case __BC_HIGH__:
hx[i]=w[j]*__MAX__(p[j]-ub[j], LM_CNST(0.0));
break;
}
}
}
/* augmented Jacobian */
static void LMBLEC_JACF(LM_REAL *p, LM_REAL *jac, int m, int n, void *adata)
{
struct LMBLEC_DATA *data=(struct LMBLEC_DATA *)adata;
int nn, *typ;
register int i, j;
register LM_REAL *lb, *ub, *w, tmp;
nn=n-m;
lb=data->lb;
ub=data->ub;
w=data->w;
typ=data->bctype;
(*(data->jacf))(p, jac, m, nn, data->adata);
/* clear all extra rows */
for(i=nn*m; i<n*m; ++i)
jac[i]=0.0;
for(i=nn, j=0; i<n; ++i, ++j){
switch(typ[j]){
case __BC_INTERVAL__:
if(lb[j]<=p[j] && p[j]<=ub[j])
continue; // corresp. jac element already 0
/* out of interval */
tmp=ub[j]-lb[j];
tmp=LM_CNST(4.0)*(LM_CNST(2.0)*p[j]-(lb[j]+ub[j]))/(tmp*tmp);
jac[i*m+j]=w[j]*tmp;
break;
case __BC_LOW__: // (lb[j]<=p[j])? 0.0 : -1.0;
if(lb[j]<=p[j])
continue; // corresp. jac element already 0
/* smaller than lower bound */
jac[i*m+j]=-w[j];
break;
case __BC_HIGH__: // (p[j]<=ub[j])? 0.0 : 1.0;
if(p[j]<=ub[j])
continue; // corresp. jac element already 0
/* greater than upper bound */
jac[i*m+j]=w[j];
break;
}
}
}
/*
* This function seeks the parameter vector p that best describes the measurements
* vector x under box & linear constraints.
* More precisely, given a vector function func : R^m --> R^n with n>=m,
* it finds p s.t. func(p) ~= x, i.e. the squared second order (i.e. L2) norm of
* e=x-func(p) is minimized under the constraints lb[i]<=p[i]<=ub[i] and A p=b;
* A is kxm, b kx1. Note that this function DOES NOT check the satisfiability of
* the specified box and linear equation constraints.
* If no lower bound constraint applies for p[i], use -DBL_MAX/-FLT_MAX for lb[i];
* If no upper bound constraint applies for p[i], use DBL_MAX/FLT_MAX for ub[i].
*
* This function requires an analytic Jacobian. In case the latter is unavailable,
* use LEVMAR_BLEC_DIF() bellow
*
* Returns the number of iterations (>=0) if successful, LM_ERROR if failed
*
* For more details on the algorithm implemented by this function, please refer to
* the comments in the top of this file.
*
*/
int LEVMAR_BLEC_DER(
void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata), /* functional relation describing measurements. A p \in R^m yields a \hat{x} \in R^n */
void (*jacf)(LM_REAL *p, LM_REAL *j, int m, int n, void *adata), /* function to evaluate the Jacobian \part x / \part p */
LM_REAL *p, /* I/O: initial parameter estimates. On output has the estimated solution */
LM_REAL *x, /* I: measurement vector. NULL implies a zero vector */
int m, /* I: parameter vector dimension (i.e. #unknowns) */
int n, /* I: measurement vector dimension */
LM_REAL *lb, /* I: vector of lower bounds. If NULL, no lower bounds apply */
LM_REAL *ub, /* I: vector of upper bounds. If NULL, no upper bounds apply */
LM_REAL *A, /* I: constraints matrix, kxm */
LM_REAL *b, /* I: right hand constraints vector, kx1 */
int k, /* I: number of constraints (i.e. A's #rows) */
LM_REAL *wghts, /* mx1 weights for penalty terms, defaults used if NULL */
int itmax, /* I: maximum number of iterations */
LM_REAL opts[4], /* I: minim. options [\mu, \epsilon1, \epsilon2, \epsilon3]. Respectively the scale factor for initial \mu,
* stopping thresholds for ||J^T e||_inf, ||Dp||_2 and ||e||_2. Set to NULL for defaults to be used
*/
LM_REAL info[LM_INFO_SZ],
/* O: information regarding the minimization. Set to NULL if don't care
* info[0]= ||e||_2 at initial p.
* info[1-4]=[ ||e||_2, ||J^T e||_inf, ||Dp||_2, mu/max[J^T J]_ii ], all computed at estimated p.
* info[5]= # iterations,
* info[6]=reason for terminating: 1 - stopped by small gradient J^T e
* 2 - stopped by small Dp
* 3 - stopped by itmax
* 4 - singular matrix. Restart from current p with increased mu
* 5 - no further error reduction is possible. Restart with increased mu
* 6 - stopped by small ||e||_2
* 7 - stopped by invalid (i.e. NaN or Inf) "func" values. This is a user error
* info[7]= # function evaluations
* info[8]= # Jacobian evaluations
* info[9]= # linear systems solved, i.e. # attempts for reducing error
*/
LM_REAL *work, /* working memory at least LM_BLEC_DER_WORKSZ() reals large, allocated if NULL */
LM_REAL *covar, /* O: Covariance matrix corresponding to LS solution; mxm. Set to NULL if not needed. */
void *adata) /* pointer to possibly additional data, passed uninterpreted to func & jacf.
* Set to NULL if not needed
*/
{
struct LMBLEC_DATA data;
int ret;
LM_REAL locinfo[LM_INFO_SZ];
register int i;
if(!jacf){
fprintf(stderr, RCAT("No function specified for computing the Jacobian in ", LEVMAR_BLEC_DER)
RCAT("().\nIf no such function is available, use ", LEVMAR_BLEC_DIF) RCAT("() rather than ", LEVMAR_BLEC_DER) "()\n");
return LM_ERROR;
}
if(!lb && !ub){
fprintf(stderr, RCAT(LCAT(LEVMAR_BLEC_DER, "(): lower and upper bounds for box constraints cannot be both NULL, use "),
LEVMAR_LEC_DER) "() in this case!\n");
return LM_ERROR;
}
if(!LEVMAR_BOX_CHECK(lb, ub, m)){
fprintf(stderr, LCAT(LEVMAR_BLEC_DER, "(): at least one lower bound exceeds the upper one\n"));
return LM_ERROR;
}
/* measurement vector needs to be extended by m */
if(x){ /* nonzero x */
data.x=(LM_REAL *)malloc((n+m)*sizeof(LM_REAL));
if(!data.x){
fprintf(stderr, LCAT(LEVMAR_BLEC_DER, "(): memory allocation request #1 failed\n"));
return LM_ERROR;
}
for(i=0; i<n; ++i)
data.x[i]=x[i];
for(i=n; i<n+m; ++i)
data.x[i]=0.0;
}
else
data.x=NULL;
data.w=(LM_REAL *)malloc(m*sizeof(LM_REAL) + m*sizeof(int)); /* should be arranged in that order for proper doubles alignment */
if(!data.w){
fprintf(stderr, LCAT(LEVMAR_BLEC_DER, "(): memory allocation request #2 failed\n"));
if(data.x) free(data.x);
return LM_ERROR;
}
data.bctype=(int *)(data.w+m);
/* note: at this point, one of lb, ub are not NULL */
for(i=0; i<m; ++i){
data.w[i]=(!wghts)? __BC_WEIGHT__ : wghts[i];
if(!lb) data.bctype[i]=__BC_HIGH__;
else if(!ub) data.bctype[i]=__BC_LOW__;
else if(ub[i]!=LM_REAL_MAX && lb[i]!=LM_REAL_MIN) data.bctype[i]=__BC_INTERVAL__;
else if(lb[i]!=LM_REAL_MIN) data.bctype[i]=__BC_LOW__;
else data.bctype[i]=__BC_HIGH__;
}
data.lb=lb;
data.ub=ub;
data.func=func;
data.jacf=jacf;
data.adata=adata;
if(!info) info=locinfo; /* make sure that LEVMAR_LEC_DER() is called with non-null info */
ret=LEVMAR_LEC_DER(LMBLEC_FUNC, LMBLEC_JACF, p, data.x, m, n+m, A, b, k, itmax, opts, info, work, covar, (void *)&data);
if(data.x) free(data.x);
free(data.w);
return ret;
}
/* Similar to the LEVMAR_BLEC_DER() function above, except that the Jacobian is approximated
* with the aid of finite differences (forward or central, see the comment for the opts argument)
*/
int LEVMAR_BLEC_DIF(
void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata), /* functional relation describing measurements. A p \in R^m yields a \hat{x} \in R^n */
LM_REAL *p, /* I/O: initial parameter estimates. On output has the estimated solution */
LM_REAL *x, /* I: measurement vector. NULL implies a zero vector */
int m, /* I: parameter vector dimension (i.e. #unknowns) */
int n, /* I: measurement vector dimension */
LM_REAL *lb, /* I: vector of lower bounds. If NULL, no lower bounds apply */
LM_REAL *ub, /* I: vector of upper bounds. If NULL, no upper bounds apply */
LM_REAL *A, /* I: constraints matrix, kxm */
LM_REAL *b, /* I: right hand constraints vector, kx1 */
int k, /* I: number of constraints (i.e. A's #rows) */
LM_REAL *wghts, /* mx1 weights for penalty terms, defaults used if NULL */
int itmax, /* I: maximum number of iterations */
LM_REAL opts[5], /* I: opts[0-3] = minim. options [\mu, \epsilon1, \epsilon2, \epsilon3, \delta]. Respectively the
* scale factor for initial \mu, stopping thresholds for ||J^T e||_inf, ||Dp||_2 and ||e||_2 and
* the step used in difference approximation to the Jacobian. Set to NULL for defaults to be used.
* If \delta<0, the Jacobian is approximated with central differences which are more accurate
* (but slower!) compared to the forward differences employed by default.
*/
LM_REAL info[LM_INFO_SZ],
/* O: information regarding the minimization. Set to NULL if don't care
* info[0]= ||e||_2 at initial p.
* info[1-4]=[ ||e||_2, ||J^T e||_inf, ||Dp||_2, mu/max[J^T J]_ii ], all computed at estimated p.
* info[5]= # iterations,
* info[6]=reason for terminating: 1 - stopped by small gradient J^T e
* 2 - stopped by small Dp
* 3 - stopped by itmax
* 4 - singular matrix. Restart from current p with increased mu
* 5 - no further error reduction is possible. Restart with increased mu
* 6 - stopped by small ||e||_2
* 7 - stopped by invalid (i.e. NaN or Inf) "func" values. This is a user error
* info[7]= # function evaluations
* info[8]= # Jacobian evaluations
* info[9]= # linear systems solved, i.e. # attempts for reducing error
*/
LM_REAL *work, /* working memory at least LM_BLEC_DIF_WORKSZ() reals large, allocated if NULL */
LM_REAL *covar, /* O: Covariance matrix corresponding to LS solution; mxm. Set to NULL if not needed. */
void *adata) /* pointer to possibly additional data, passed uninterpreted to func.
* Set to NULL if not needed
*/
{
struct LMBLEC_DATA data;
int ret;
register int i;
LM_REAL locinfo[LM_INFO_SZ];
if(!lb && !ub){
fprintf(stderr, RCAT(LCAT(LEVMAR_BLEC_DIF, "(): lower and upper bounds for box constraints cannot be both NULL, use "),
LEVMAR_LEC_DIF) "() in this case!\n");
return LM_ERROR;
}
if(!LEVMAR_BOX_CHECK(lb, ub, m)){
fprintf(stderr, LCAT(LEVMAR_BLEC_DER, "(): at least one lower bound exceeds the upper one\n"));
return LM_ERROR;
}
/* measurement vector needs to be extended by m */
if(x){ /* nonzero x */
data.x=(LM_REAL *)malloc((n+m)*sizeof(LM_REAL));
if(!data.x){
fprintf(stderr, LCAT(LEVMAR_BLEC_DER, "(): memory allocation request #1 failed\n"));
return LM_ERROR;
}
for(i=0; i<n; ++i)
data.x[i]=x[i];
for(i=n; i<n+m; ++i)
data.x[i]=0.0;
}
else
data.x=NULL;
data.w=(LM_REAL *)malloc(m*sizeof(LM_REAL) + m*sizeof(int)); /* should be arranged in that order for proper doubles alignment */
if(!data.w){
fprintf(stderr, LCAT(LEVMAR_BLEC_DER, "(): memory allocation request #2 failed\n"));
if(data.x) free(data.x);
return LM_ERROR;
}
data.bctype=(int *)(data.w+m);
/* note: at this point, one of lb, ub are not NULL */
for(i=0; i<m; ++i){
data.w[i]=(!wghts)? __BC_WEIGHT__ : wghts[i];
if(!lb) data.bctype[i]=__BC_HIGH__;
else if(!ub) data.bctype[i]=__BC_LOW__;
else if(ub[i]!=LM_REAL_MAX && lb[i]!=LM_REAL_MIN) data.bctype[i]=__BC_INTERVAL__;
else if(lb[i]!=LM_REAL_MIN) data.bctype[i]=__BC_LOW__;
else data.bctype[i]=__BC_HIGH__;
}
data.lb=lb;
data.ub=ub;
data.func=func;
data.jacf=NULL;
data.adata=adata;
if(!info) info=locinfo; /* make sure that LEVMAR_LEC_DIF() is called with non-null info */
ret=LEVMAR_LEC_DIF(LMBLEC_FUNC, p, data.x, m, n+m, A, b, k, itmax, opts, info, work, covar, (void *)&data);
if(data.x) free(data.x);
free(data.w);
return ret;
}
/* undefine all. THIS MUST REMAIN AT THE END OF THE FILE */
#undef LEVMAR_BOX_CHECK
#undef LMBLEC_DATA
#undef LMBLEC_FUNC
#undef LMBLEC_JACF
#undef LEVMAR_COVAR
#undef LEVMAR_LEC_DER
#undef LEVMAR_LEC_DIF
#undef LEVMAR_BLEC_DER
#undef LEVMAR_BLEC_DIF