mirror of
https://github.com/GoldenCheetah/GoldenCheetah.git
synced 2026-02-13 16:18:42 +00:00
.. Makes it easier to identify code that has been snaffled in from other repositories and check licensing .. The httpserver is now no longer optional, since it is delivered as contributed source.
414 lines
17 KiB
C
414 lines
17 KiB
C
/////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Levenberg - Marquardt non-linear minimization algorithm
|
|
// Copyright (C) 2004-06 Manolis Lourakis (lourakis at ics forth gr)
|
|
// Institute of Computer Science, Foundation for Research & Technology - Hellas
|
|
// Heraklion, Crete, Greece.
|
|
//
|
|
// This program is free software; you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation; either version 2 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// This program is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
//
|
|
/////////////////////////////////////////////////////////////////////////////////
|
|
|
|
/*******************************************************************************
|
|
* This file implements combined box and linear equation constraints.
|
|
*
|
|
* Note that the algorithm implementing linearly constrained minimization does
|
|
* so by a change in parameters that transforms the original program into an
|
|
* unconstrained one. To employ the same idea for implementing box & linear
|
|
* constraints would require the transformation of box constraints on the
|
|
* original parameters to box constraints for the new parameter set. This
|
|
* being impossible, a different approach is used here for finding the minimum.
|
|
* The trick is to remove the box constraints by augmenting the function to
|
|
* be fitted with penalty terms and then solve the resulting problem (which
|
|
* involves linear constrains only) with the functions in lmlec.c
|
|
*
|
|
* More specifically, for the constraint a<=x[i]<=b to hold, the term C[i]=
|
|
* (2*x[i]-(a+b))/(b-a) should be within [-1, 1]. This is enforced by adding
|
|
* the penalty term w[i]*max((C[i])^2-1, 0) to the objective function, where
|
|
* w[i] is a large weight. In the case of constraints of the form a<=x[i],
|
|
* the term C[i]=a-x[i] has to be non positive, thus the penalty term is
|
|
* w[i]*max(C[i], 0). If x[i]<=b, C[i]=x[i]-b has to be non negative and
|
|
* the penalty is w[i]*max(C[i], 0). The derivatives needed for the Jacobian
|
|
* are as follows:
|
|
* For the constraint a<=x[i]<=b: 4*(2*x[i]-(a+b))/(b-a)^2 if x[i] not in [a, b],
|
|
* 0 otherwise
|
|
* For the constraint a<=x[i]: -1 if x[i]<=a, 0 otherwise
|
|
* For the constraint x[i]<=b: 1 if b<=x[i], 0 otherwise
|
|
*
|
|
* Note that for the above to work, the weights w[i] should be large enough;
|
|
* depending on your minimization problem, the default values might need some
|
|
* tweaking (see arg "wghts" below).
|
|
*******************************************************************************/
|
|
|
|
#ifndef LM_REAL // not included by lmblec.c
|
|
#error This file should not be compiled directly!
|
|
#endif
|
|
|
|
|
|
#define __MAX__(x, y) (((x)>=(y))? (x) : (y))
|
|
#define __BC_WEIGHT__ LM_CNST(1E+04)
|
|
|
|
#define __BC_INTERVAL__ 0
|
|
#define __BC_LOW__ 1
|
|
#define __BC_HIGH__ 2
|
|
|
|
/* precision-specific definitions */
|
|
#define LEVMAR_BOX_CHECK LM_ADD_PREFIX(levmar_box_check)
|
|
#define LMBLEC_DATA LM_ADD_PREFIX(lmblec_data)
|
|
#define LMBLEC_FUNC LM_ADD_PREFIX(lmblec_func)
|
|
#define LMBLEC_JACF LM_ADD_PREFIX(lmblec_jacf)
|
|
#define LEVMAR_LEC_DER LM_ADD_PREFIX(levmar_lec_der)
|
|
#define LEVMAR_LEC_DIF LM_ADD_PREFIX(levmar_lec_dif)
|
|
#define LEVMAR_BLEC_DER LM_ADD_PREFIX(levmar_blec_der)
|
|
#define LEVMAR_BLEC_DIF LM_ADD_PREFIX(levmar_blec_dif)
|
|
#define LEVMAR_COVAR LM_ADD_PREFIX(levmar_covar)
|
|
|
|
struct LMBLEC_DATA{
|
|
LM_REAL *x, *lb, *ub, *w;
|
|
int *bctype;
|
|
void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata);
|
|
void (*jacf)(LM_REAL *p, LM_REAL *jac, int m, int n, void *adata);
|
|
void *adata;
|
|
};
|
|
|
|
/* augmented measurements */
|
|
static void LMBLEC_FUNC(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata)
|
|
{
|
|
struct LMBLEC_DATA *data=(struct LMBLEC_DATA *)adata;
|
|
int nn;
|
|
register int i, j, *typ;
|
|
register LM_REAL *lb, *ub, *w, tmp;
|
|
|
|
nn=n-m;
|
|
lb=data->lb;
|
|
ub=data->ub;
|
|
w=data->w;
|
|
typ=data->bctype;
|
|
(*(data->func))(p, hx, m, nn, data->adata);
|
|
|
|
for(i=nn, j=0; i<n; ++i, ++j){
|
|
switch(typ[j]){
|
|
case __BC_INTERVAL__:
|
|
tmp=(LM_CNST(2.0)*p[j]-(lb[j]+ub[j]))/(ub[j]-lb[j]);
|
|
hx[i]=w[j]*__MAX__(tmp*tmp-LM_CNST(1.0), LM_CNST(0.0));
|
|
break;
|
|
|
|
case __BC_LOW__:
|
|
hx[i]=w[j]*__MAX__(lb[j]-p[j], LM_CNST(0.0));
|
|
break;
|
|
|
|
case __BC_HIGH__:
|
|
hx[i]=w[j]*__MAX__(p[j]-ub[j], LM_CNST(0.0));
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* augmented Jacobian */
|
|
static void LMBLEC_JACF(LM_REAL *p, LM_REAL *jac, int m, int n, void *adata)
|
|
{
|
|
struct LMBLEC_DATA *data=(struct LMBLEC_DATA *)adata;
|
|
int nn, *typ;
|
|
register int i, j;
|
|
register LM_REAL *lb, *ub, *w, tmp;
|
|
|
|
nn=n-m;
|
|
lb=data->lb;
|
|
ub=data->ub;
|
|
w=data->w;
|
|
typ=data->bctype;
|
|
(*(data->jacf))(p, jac, m, nn, data->adata);
|
|
|
|
/* clear all extra rows */
|
|
for(i=nn*m; i<n*m; ++i)
|
|
jac[i]=0.0;
|
|
|
|
for(i=nn, j=0; i<n; ++i, ++j){
|
|
switch(typ[j]){
|
|
case __BC_INTERVAL__:
|
|
if(lb[j]<=p[j] && p[j]<=ub[j])
|
|
continue; // corresp. jac element already 0
|
|
|
|
/* out of interval */
|
|
tmp=ub[j]-lb[j];
|
|
tmp=LM_CNST(4.0)*(LM_CNST(2.0)*p[j]-(lb[j]+ub[j]))/(tmp*tmp);
|
|
jac[i*m+j]=w[j]*tmp;
|
|
break;
|
|
|
|
case __BC_LOW__: // (lb[j]<=p[j])? 0.0 : -1.0;
|
|
if(lb[j]<=p[j])
|
|
continue; // corresp. jac element already 0
|
|
|
|
/* smaller than lower bound */
|
|
jac[i*m+j]=-w[j];
|
|
break;
|
|
|
|
case __BC_HIGH__: // (p[j]<=ub[j])? 0.0 : 1.0;
|
|
if(p[j]<=ub[j])
|
|
continue; // corresp. jac element already 0
|
|
|
|
/* greater than upper bound */
|
|
jac[i*m+j]=w[j];
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This function seeks the parameter vector p that best describes the measurements
|
|
* vector x under box & linear constraints.
|
|
* More precisely, given a vector function func : R^m --> R^n with n>=m,
|
|
* it finds p s.t. func(p) ~= x, i.e. the squared second order (i.e. L2) norm of
|
|
* e=x-func(p) is minimized under the constraints lb[i]<=p[i]<=ub[i] and A p=b;
|
|
* A is kxm, b kx1. Note that this function DOES NOT check the satisfiability of
|
|
* the specified box and linear equation constraints.
|
|
* If no lower bound constraint applies for p[i], use -DBL_MAX/-FLT_MAX for lb[i];
|
|
* If no upper bound constraint applies for p[i], use DBL_MAX/FLT_MAX for ub[i].
|
|
*
|
|
* This function requires an analytic Jacobian. In case the latter is unavailable,
|
|
* use LEVMAR_BLEC_DIF() bellow
|
|
*
|
|
* Returns the number of iterations (>=0) if successful, LM_ERROR if failed
|
|
*
|
|
* For more details on the algorithm implemented by this function, please refer to
|
|
* the comments in the top of this file.
|
|
*
|
|
*/
|
|
int LEVMAR_BLEC_DER(
|
|
void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata), /* functional relation describing measurements. A p \in R^m yields a \hat{x} \in R^n */
|
|
void (*jacf)(LM_REAL *p, LM_REAL *j, int m, int n, void *adata), /* function to evaluate the Jacobian \part x / \part p */
|
|
LM_REAL *p, /* I/O: initial parameter estimates. On output has the estimated solution */
|
|
LM_REAL *x, /* I: measurement vector. NULL implies a zero vector */
|
|
int m, /* I: parameter vector dimension (i.e. #unknowns) */
|
|
int n, /* I: measurement vector dimension */
|
|
LM_REAL *lb, /* I: vector of lower bounds. If NULL, no lower bounds apply */
|
|
LM_REAL *ub, /* I: vector of upper bounds. If NULL, no upper bounds apply */
|
|
LM_REAL *A, /* I: constraints matrix, kxm */
|
|
LM_REAL *b, /* I: right hand constraints vector, kx1 */
|
|
int k, /* I: number of constraints (i.e. A's #rows) */
|
|
LM_REAL *wghts, /* mx1 weights for penalty terms, defaults used if NULL */
|
|
int itmax, /* I: maximum number of iterations */
|
|
LM_REAL opts[4], /* I: minim. options [\mu, \epsilon1, \epsilon2, \epsilon3]. Respectively the scale factor for initial \mu,
|
|
* stopping thresholds for ||J^T e||_inf, ||Dp||_2 and ||e||_2. Set to NULL for defaults to be used
|
|
*/
|
|
LM_REAL info[LM_INFO_SZ],
|
|
/* O: information regarding the minimization. Set to NULL if don't care
|
|
* info[0]= ||e||_2 at initial p.
|
|
* info[1-4]=[ ||e||_2, ||J^T e||_inf, ||Dp||_2, mu/max[J^T J]_ii ], all computed at estimated p.
|
|
* info[5]= # iterations,
|
|
* info[6]=reason for terminating: 1 - stopped by small gradient J^T e
|
|
* 2 - stopped by small Dp
|
|
* 3 - stopped by itmax
|
|
* 4 - singular matrix. Restart from current p with increased mu
|
|
* 5 - no further error reduction is possible. Restart with increased mu
|
|
* 6 - stopped by small ||e||_2
|
|
* 7 - stopped by invalid (i.e. NaN or Inf) "func" values. This is a user error
|
|
* info[7]= # function evaluations
|
|
* info[8]= # Jacobian evaluations
|
|
* info[9]= # linear systems solved, i.e. # attempts for reducing error
|
|
*/
|
|
LM_REAL *work, /* working memory at least LM_BLEC_DER_WORKSZ() reals large, allocated if NULL */
|
|
LM_REAL *covar, /* O: Covariance matrix corresponding to LS solution; mxm. Set to NULL if not needed. */
|
|
void *adata) /* pointer to possibly additional data, passed uninterpreted to func & jacf.
|
|
* Set to NULL if not needed
|
|
*/
|
|
{
|
|
struct LMBLEC_DATA data;
|
|
int ret;
|
|
LM_REAL locinfo[LM_INFO_SZ];
|
|
register int i;
|
|
|
|
if(!jacf){
|
|
fprintf(stderr, RCAT("No function specified for computing the Jacobian in ", LEVMAR_BLEC_DER)
|
|
RCAT("().\nIf no such function is available, use ", LEVMAR_BLEC_DIF) RCAT("() rather than ", LEVMAR_BLEC_DER) "()\n");
|
|
return LM_ERROR;
|
|
}
|
|
|
|
if(!lb && !ub){
|
|
fprintf(stderr, RCAT(LCAT(LEVMAR_BLEC_DER, "(): lower and upper bounds for box constraints cannot be both NULL, use "),
|
|
LEVMAR_LEC_DER) "() in this case!\n");
|
|
return LM_ERROR;
|
|
}
|
|
|
|
if(!LEVMAR_BOX_CHECK(lb, ub, m)){
|
|
fprintf(stderr, LCAT(LEVMAR_BLEC_DER, "(): at least one lower bound exceeds the upper one\n"));
|
|
return LM_ERROR;
|
|
}
|
|
|
|
/* measurement vector needs to be extended by m */
|
|
if(x){ /* nonzero x */
|
|
data.x=(LM_REAL *)malloc((n+m)*sizeof(LM_REAL));
|
|
if(!data.x){
|
|
fprintf(stderr, LCAT(LEVMAR_BLEC_DER, "(): memory allocation request #1 failed\n"));
|
|
return LM_ERROR;
|
|
}
|
|
|
|
for(i=0; i<n; ++i)
|
|
data.x[i]=x[i];
|
|
for(i=n; i<n+m; ++i)
|
|
data.x[i]=0.0;
|
|
}
|
|
else
|
|
data.x=NULL;
|
|
|
|
data.w=(LM_REAL *)malloc(m*sizeof(LM_REAL) + m*sizeof(int)); /* should be arranged in that order for proper doubles alignment */
|
|
if(!data.w){
|
|
fprintf(stderr, LCAT(LEVMAR_BLEC_DER, "(): memory allocation request #2 failed\n"));
|
|
if(data.x) free(data.x);
|
|
return LM_ERROR;
|
|
}
|
|
data.bctype=(int *)(data.w+m);
|
|
|
|
/* note: at this point, one of lb, ub are not NULL */
|
|
for(i=0; i<m; ++i){
|
|
data.w[i]=(!wghts)? __BC_WEIGHT__ : wghts[i];
|
|
if(!lb) data.bctype[i]=__BC_HIGH__;
|
|
else if(!ub) data.bctype[i]=__BC_LOW__;
|
|
else if(ub[i]!=LM_REAL_MAX && lb[i]!=LM_REAL_MIN) data.bctype[i]=__BC_INTERVAL__;
|
|
else if(lb[i]!=LM_REAL_MIN) data.bctype[i]=__BC_LOW__;
|
|
else data.bctype[i]=__BC_HIGH__;
|
|
}
|
|
|
|
data.lb=lb;
|
|
data.ub=ub;
|
|
data.func=func;
|
|
data.jacf=jacf;
|
|
data.adata=adata;
|
|
|
|
if(!info) info=locinfo; /* make sure that LEVMAR_LEC_DER() is called with non-null info */
|
|
ret=LEVMAR_LEC_DER(LMBLEC_FUNC, LMBLEC_JACF, p, data.x, m, n+m, A, b, k, itmax, opts, info, work, covar, (void *)&data);
|
|
|
|
if(data.x) free(data.x);
|
|
free(data.w);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Similar to the LEVMAR_BLEC_DER() function above, except that the Jacobian is approximated
|
|
* with the aid of finite differences (forward or central, see the comment for the opts argument)
|
|
*/
|
|
int LEVMAR_BLEC_DIF(
|
|
void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata), /* functional relation describing measurements. A p \in R^m yields a \hat{x} \in R^n */
|
|
LM_REAL *p, /* I/O: initial parameter estimates. On output has the estimated solution */
|
|
LM_REAL *x, /* I: measurement vector. NULL implies a zero vector */
|
|
int m, /* I: parameter vector dimension (i.e. #unknowns) */
|
|
int n, /* I: measurement vector dimension */
|
|
LM_REAL *lb, /* I: vector of lower bounds. If NULL, no lower bounds apply */
|
|
LM_REAL *ub, /* I: vector of upper bounds. If NULL, no upper bounds apply */
|
|
LM_REAL *A, /* I: constraints matrix, kxm */
|
|
LM_REAL *b, /* I: right hand constraints vector, kx1 */
|
|
int k, /* I: number of constraints (i.e. A's #rows) */
|
|
LM_REAL *wghts, /* mx1 weights for penalty terms, defaults used if NULL */
|
|
int itmax, /* I: maximum number of iterations */
|
|
LM_REAL opts[5], /* I: opts[0-3] = minim. options [\mu, \epsilon1, \epsilon2, \epsilon3, \delta]. Respectively the
|
|
* scale factor for initial \mu, stopping thresholds for ||J^T e||_inf, ||Dp||_2 and ||e||_2 and
|
|
* the step used in difference approximation to the Jacobian. Set to NULL for defaults to be used.
|
|
* If \delta<0, the Jacobian is approximated with central differences which are more accurate
|
|
* (but slower!) compared to the forward differences employed by default.
|
|
*/
|
|
LM_REAL info[LM_INFO_SZ],
|
|
/* O: information regarding the minimization. Set to NULL if don't care
|
|
* info[0]= ||e||_2 at initial p.
|
|
* info[1-4]=[ ||e||_2, ||J^T e||_inf, ||Dp||_2, mu/max[J^T J]_ii ], all computed at estimated p.
|
|
* info[5]= # iterations,
|
|
* info[6]=reason for terminating: 1 - stopped by small gradient J^T e
|
|
* 2 - stopped by small Dp
|
|
* 3 - stopped by itmax
|
|
* 4 - singular matrix. Restart from current p with increased mu
|
|
* 5 - no further error reduction is possible. Restart with increased mu
|
|
* 6 - stopped by small ||e||_2
|
|
* 7 - stopped by invalid (i.e. NaN or Inf) "func" values. This is a user error
|
|
* info[7]= # function evaluations
|
|
* info[8]= # Jacobian evaluations
|
|
* info[9]= # linear systems solved, i.e. # attempts for reducing error
|
|
*/
|
|
LM_REAL *work, /* working memory at least LM_BLEC_DIF_WORKSZ() reals large, allocated if NULL */
|
|
LM_REAL *covar, /* O: Covariance matrix corresponding to LS solution; mxm. Set to NULL if not needed. */
|
|
void *adata) /* pointer to possibly additional data, passed uninterpreted to func.
|
|
* Set to NULL if not needed
|
|
*/
|
|
{
|
|
struct LMBLEC_DATA data;
|
|
int ret;
|
|
register int i;
|
|
LM_REAL locinfo[LM_INFO_SZ];
|
|
|
|
if(!lb && !ub){
|
|
fprintf(stderr, RCAT(LCAT(LEVMAR_BLEC_DIF, "(): lower and upper bounds for box constraints cannot be both NULL, use "),
|
|
LEVMAR_LEC_DIF) "() in this case!\n");
|
|
return LM_ERROR;
|
|
}
|
|
|
|
if(!LEVMAR_BOX_CHECK(lb, ub, m)){
|
|
fprintf(stderr, LCAT(LEVMAR_BLEC_DER, "(): at least one lower bound exceeds the upper one\n"));
|
|
return LM_ERROR;
|
|
}
|
|
|
|
/* measurement vector needs to be extended by m */
|
|
if(x){ /* nonzero x */
|
|
data.x=(LM_REAL *)malloc((n+m)*sizeof(LM_REAL));
|
|
if(!data.x){
|
|
fprintf(stderr, LCAT(LEVMAR_BLEC_DER, "(): memory allocation request #1 failed\n"));
|
|
return LM_ERROR;
|
|
}
|
|
|
|
for(i=0; i<n; ++i)
|
|
data.x[i]=x[i];
|
|
for(i=n; i<n+m; ++i)
|
|
data.x[i]=0.0;
|
|
}
|
|
else
|
|
data.x=NULL;
|
|
|
|
data.w=(LM_REAL *)malloc(m*sizeof(LM_REAL) + m*sizeof(int)); /* should be arranged in that order for proper doubles alignment */
|
|
if(!data.w){
|
|
fprintf(stderr, LCAT(LEVMAR_BLEC_DER, "(): memory allocation request #2 failed\n"));
|
|
if(data.x) free(data.x);
|
|
return LM_ERROR;
|
|
}
|
|
data.bctype=(int *)(data.w+m);
|
|
|
|
/* note: at this point, one of lb, ub are not NULL */
|
|
for(i=0; i<m; ++i){
|
|
data.w[i]=(!wghts)? __BC_WEIGHT__ : wghts[i];
|
|
if(!lb) data.bctype[i]=__BC_HIGH__;
|
|
else if(!ub) data.bctype[i]=__BC_LOW__;
|
|
else if(ub[i]!=LM_REAL_MAX && lb[i]!=LM_REAL_MIN) data.bctype[i]=__BC_INTERVAL__;
|
|
else if(lb[i]!=LM_REAL_MIN) data.bctype[i]=__BC_LOW__;
|
|
else data.bctype[i]=__BC_HIGH__;
|
|
}
|
|
|
|
data.lb=lb;
|
|
data.ub=ub;
|
|
data.func=func;
|
|
data.jacf=NULL;
|
|
data.adata=adata;
|
|
|
|
if(!info) info=locinfo; /* make sure that LEVMAR_LEC_DIF() is called with non-null info */
|
|
ret=LEVMAR_LEC_DIF(LMBLEC_FUNC, p, data.x, m, n+m, A, b, k, itmax, opts, info, work, covar, (void *)&data);
|
|
|
|
if(data.x) free(data.x);
|
|
free(data.w);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* undefine all. THIS MUST REMAIN AT THE END OF THE FILE */
|
|
#undef LEVMAR_BOX_CHECK
|
|
#undef LMBLEC_DATA
|
|
#undef LMBLEC_FUNC
|
|
#undef LMBLEC_JACF
|
|
#undef LEVMAR_COVAR
|
|
#undef LEVMAR_LEC_DER
|
|
#undef LEVMAR_LEC_DIF
|
|
#undef LEVMAR_BLEC_DER
|
|
#undef LEVMAR_BLEC_DIF
|