mirror of
https://github.com/GoldenCheetah/GoldenCheetah.git
synced 2026-02-13 16:18:42 +00:00
.. allows constrained fits .. this is a GPL lib that is included into the source tree to avoid adding another painful deendency. .. for details of the lib please see: http://users.ics.forth.gr/~lourakis/levmar/
1283 lines
36 KiB
C
1283 lines
36 KiB
C
/////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Solution of linear systems involved in the Levenberg - Marquardt
|
|
// minimization algorithm
|
|
// Copyright (C) 2004 Manolis Lourakis (lourakis at ics forth gr)
|
|
// Institute of Computer Science, Foundation for Research & Technology - Hellas
|
|
// Heraklion, Crete, Greece.
|
|
//
|
|
// This program is free software; you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation; either version 2 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// This program is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
//
|
|
/////////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
/* Solvers for the linear systems Ax=b. Solvers should NOT modify their A & B arguments! */
|
|
|
|
|
|
#ifndef LM_REAL // not included by Axb.c
|
|
#error This file should not be compiled directly!
|
|
#endif
|
|
|
|
|
|
#ifdef LINSOLVERS_RETAIN_MEMORY
|
|
#define __STATIC__ static
|
|
#else
|
|
#define __STATIC__ // empty
|
|
#endif /* LINSOLVERS_RETAIN_MEMORY */
|
|
|
|
#ifdef HAVE_LAPACK
|
|
|
|
/* prototypes of LAPACK routines */
|
|
|
|
#define GEQRF LM_MK_LAPACK_NAME(geqrf)
|
|
#define ORGQR LM_MK_LAPACK_NAME(orgqr)
|
|
#define TRTRS LM_MK_LAPACK_NAME(trtrs)
|
|
#define POTF2 LM_MK_LAPACK_NAME(potf2)
|
|
#define POTRF LM_MK_LAPACK_NAME(potrf)
|
|
#define POTRS LM_MK_LAPACK_NAME(potrs)
|
|
#define GETRF LM_MK_LAPACK_NAME(getrf)
|
|
#define GETRS LM_MK_LAPACK_NAME(getrs)
|
|
#define GESVD LM_MK_LAPACK_NAME(gesvd)
|
|
#define GESDD LM_MK_LAPACK_NAME(gesdd)
|
|
#define SYTRF LM_MK_LAPACK_NAME(sytrf)
|
|
#define SYTRS LM_MK_LAPACK_NAME(sytrs)
|
|
#define PLASMA_POSV LM_CAT_(PLASMA_, LM_ADD_PREFIX(posv))
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
/* QR decomposition */
|
|
extern int GEQRF(int *m, int *n, LM_REAL *a, int *lda, LM_REAL *tau, LM_REAL *work, int *lwork, int *info);
|
|
extern int ORGQR(int *m, int *n, int *k, LM_REAL *a, int *lda, LM_REAL *tau, LM_REAL *work, int *lwork, int *info);
|
|
|
|
/* solution of triangular systems */
|
|
extern int TRTRS(char *uplo, char *trans, char *diag, int *n, int *nrhs, LM_REAL *a, int *lda, LM_REAL *b, int *ldb, int *info);
|
|
|
|
/* Cholesky decomposition and systems solution */
|
|
extern int POTF2(char *uplo, int *n, LM_REAL *a, int *lda, int *info);
|
|
extern int POTRF(char *uplo, int *n, LM_REAL *a, int *lda, int *info); /* block version of dpotf2 */
|
|
extern int POTRS(char *uplo, int *n, int *nrhs, LM_REAL *a, int *lda, LM_REAL *b, int *ldb, int *info);
|
|
|
|
/* LU decomposition and systems solution */
|
|
extern int GETRF(int *m, int *n, LM_REAL *a, int *lda, int *ipiv, int *info);
|
|
extern int GETRS(char *trans, int *n, int *nrhs, LM_REAL *a, int *lda, int *ipiv, LM_REAL *b, int *ldb, int *info);
|
|
|
|
/* Singular Value Decomposition (SVD) */
|
|
extern int GESVD(char *jobu, char *jobvt, int *m, int *n, LM_REAL *a, int *lda, LM_REAL *s, LM_REAL *u, int *ldu,
|
|
LM_REAL *vt, int *ldvt, LM_REAL *work, int *lwork, int *info);
|
|
|
|
/* lapack 3.0 new SVD routine, faster than xgesvd().
|
|
* In case that your version of LAPACK does not include them, use the above two older routines
|
|
*/
|
|
extern int GESDD(char *jobz, int *m, int *n, LM_REAL *a, int *lda, LM_REAL *s, LM_REAL *u, int *ldu, LM_REAL *vt, int *ldvt,
|
|
LM_REAL *work, int *lwork, int *iwork, int *info);
|
|
|
|
/* LDLt/UDUt factorization and systems solution */
|
|
extern int SYTRF(char *uplo, int *n, LM_REAL *a, int *lda, int *ipiv, LM_REAL *work, int *lwork, int *info);
|
|
extern int SYTRS(char *uplo, int *n, int *nrhs, LM_REAL *a, int *lda, int *ipiv, LM_REAL *b, int *ldb, int *info);
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|
|
|
|
/* precision-specific definitions */
|
|
#define AX_EQ_B_QR LM_ADD_PREFIX(Ax_eq_b_QR)
|
|
#define AX_EQ_B_QRLS LM_ADD_PREFIX(Ax_eq_b_QRLS)
|
|
#define AX_EQ_B_CHOL LM_ADD_PREFIX(Ax_eq_b_Chol)
|
|
#define AX_EQ_B_LU LM_ADD_PREFIX(Ax_eq_b_LU)
|
|
#define AX_EQ_B_SVD LM_ADD_PREFIX(Ax_eq_b_SVD)
|
|
#define AX_EQ_B_BK LM_ADD_PREFIX(Ax_eq_b_BK)
|
|
#define AX_EQ_B_PLASMA_CHOL LM_ADD_PREFIX(Ax_eq_b_PLASMA_Chol)
|
|
|
|
/*
|
|
* This function returns the solution of Ax = b
|
|
*
|
|
* The function is based on QR decomposition with explicit computation of Q:
|
|
* If A=Q R with Q orthogonal and R upper triangular, the linear system becomes
|
|
* Q R x = b or R x = Q^T b.
|
|
* The last equation can be solved directly.
|
|
*
|
|
* A is mxm, b is mx1
|
|
*
|
|
* The function returns 0 in case of error, 1 if successful
|
|
*
|
|
* This function is often called repetitively to solve problems of identical
|
|
* dimensions. To avoid repetitive malloc's and free's, allocated memory is
|
|
* retained between calls and free'd-malloc'ed when not of the appropriate size.
|
|
* A call with NULL as the first argument forces this memory to be released.
|
|
*/
|
|
int AX_EQ_B_QR(LM_REAL *A, LM_REAL *B, LM_REAL *x, int m)
|
|
{
|
|
__STATIC__ LM_REAL *buf=NULL;
|
|
__STATIC__ int buf_sz=0;
|
|
|
|
static int nb=0; /* no __STATIC__ decl. here! */
|
|
|
|
LM_REAL *a, *tau, *r, *work;
|
|
int a_sz, tau_sz, r_sz, tot_sz;
|
|
register int i, j;
|
|
int info, worksz, nrhs=1;
|
|
register LM_REAL sum;
|
|
|
|
if(!A)
|
|
#ifdef LINSOLVERS_RETAIN_MEMORY
|
|
{
|
|
if(buf) free(buf);
|
|
buf=NULL;
|
|
buf_sz=0;
|
|
|
|
return 1;
|
|
}
|
|
#else
|
|
return 1; /* NOP */
|
|
#endif /* LINSOLVERS_RETAIN_MEMORY */
|
|
|
|
/* calculate required memory size */
|
|
a_sz=m*m;
|
|
tau_sz=m;
|
|
r_sz=m*m; /* only the upper triangular part really needed */
|
|
if(!nb){
|
|
LM_REAL tmp;
|
|
|
|
worksz=-1; // workspace query; optimal size is returned in tmp
|
|
GEQRF((int *)&m, (int *)&m, NULL, (int *)&m, NULL, (LM_REAL *)&tmp, (int *)&worksz, (int *)&info);
|
|
nb=((int)tmp)/m; // optimal worksize is m*nb
|
|
}
|
|
worksz=nb*m;
|
|
tot_sz=a_sz + tau_sz + r_sz + worksz;
|
|
|
|
#ifdef LINSOLVERS_RETAIN_MEMORY
|
|
if(tot_sz>buf_sz){ /* insufficient memory, allocate a "big" memory chunk at once */
|
|
if(buf) free(buf); /* free previously allocated memory */
|
|
|
|
buf_sz=tot_sz;
|
|
buf=(LM_REAL *)malloc(buf_sz*sizeof(LM_REAL));
|
|
if(!buf){
|
|
fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_QR) "() failed!\n");
|
|
exit(1);
|
|
}
|
|
}
|
|
#else
|
|
buf_sz=tot_sz;
|
|
buf=(LM_REAL *)malloc(buf_sz*sizeof(LM_REAL));
|
|
if(!buf){
|
|
fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_QR) "() failed!\n");
|
|
exit(1);
|
|
}
|
|
#endif /* LINSOLVERS_RETAIN_MEMORY */
|
|
|
|
a=buf;
|
|
tau=a+a_sz;
|
|
r=tau+tau_sz;
|
|
work=r+r_sz;
|
|
|
|
/* store A (column major!) into a */
|
|
for(i=0; i<m; i++)
|
|
for(j=0; j<m; j++)
|
|
a[i+j*m]=A[i*m+j];
|
|
|
|
/* QR decomposition of A */
|
|
GEQRF((int *)&m, (int *)&m, a, (int *)&m, tau, work, (int *)&worksz, (int *)&info);
|
|
/* error treatment */
|
|
if(info!=0){
|
|
if(info<0){
|
|
fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", GEQRF) " in ", AX_EQ_B_QR) "()\n", -info);
|
|
exit(1);
|
|
}
|
|
else{
|
|
fprintf(stderr, RCAT(RCAT("Unknown LAPACK error %d for ", GEQRF) " in ", AX_EQ_B_QR) "()\n", info);
|
|
#ifndef LINSOLVERS_RETAIN_MEMORY
|
|
free(buf);
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* R is stored in the upper triangular part of a; copy it in r so that ORGQR() below won't destroy it */
|
|
memcpy(r, a, r_sz*sizeof(LM_REAL));
|
|
|
|
/* compute Q using the elementary reflectors computed by the above decomposition */
|
|
ORGQR((int *)&m, (int *)&m, (int *)&m, a, (int *)&m, tau, work, (int *)&worksz, (int *)&info);
|
|
if(info!=0){
|
|
if(info<0){
|
|
fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", ORGQR) " in ", AX_EQ_B_QR) "()\n", -info);
|
|
exit(1);
|
|
}
|
|
else{
|
|
fprintf(stderr, RCAT("Unknown LAPACK error (%d) in ", AX_EQ_B_QR) "()\n", info);
|
|
#ifndef LINSOLVERS_RETAIN_MEMORY
|
|
free(buf);
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* Q is now in a; compute Q^T b in x */
|
|
for(i=0; i<m; i++){
|
|
for(j=0, sum=0.0; j<m; j++)
|
|
sum+=a[i*m+j]*B[j];
|
|
x[i]=sum;
|
|
}
|
|
|
|
/* solve the linear system R x = Q^t b */
|
|
TRTRS("U", "N", "N", (int *)&m, (int *)&nrhs, r, (int *)&m, x, (int *)&m, &info);
|
|
/* error treatment */
|
|
if(info!=0){
|
|
if(info<0){
|
|
fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", TRTRS) " in ", AX_EQ_B_QR) "()\n", -info);
|
|
exit(1);
|
|
}
|
|
else{
|
|
fprintf(stderr, RCAT("LAPACK error: the %d-th diagonal element of A is zero (singular matrix) in ", AX_EQ_B_QR) "()\n", info);
|
|
#ifndef LINSOLVERS_RETAIN_MEMORY
|
|
free(buf);
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
#ifndef LINSOLVERS_RETAIN_MEMORY
|
|
free(buf);
|
|
#endif
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* This function returns the solution of min_x ||Ax - b||
|
|
*
|
|
* || . || is the second order (i.e. L2) norm. This is a least squares technique that
|
|
* is based on QR decomposition:
|
|
* If A=Q R with Q orthogonal and R upper triangular, the normal equations become
|
|
* (A^T A) x = A^T b or (R^T Q^T Q R) x = A^T b or (R^T R) x = A^T b.
|
|
* This amounts to solving R^T y = A^T b for y and then R x = y for x
|
|
* Note that Q does not need to be explicitly computed
|
|
*
|
|
* A is mxn, b is mx1
|
|
*
|
|
* The function returns 0 in case of error, 1 if successful
|
|
*
|
|
* This function is often called repetitively to solve problems of identical
|
|
* dimensions. To avoid repetitive malloc's and free's, allocated memory is
|
|
* retained between calls and free'd-malloc'ed when not of the appropriate size.
|
|
* A call with NULL as the first argument forces this memory to be released.
|
|
*/
|
|
int AX_EQ_B_QRLS(LM_REAL *A, LM_REAL *B, LM_REAL *x, int m, int n)
|
|
{
|
|
__STATIC__ LM_REAL *buf=NULL;
|
|
__STATIC__ int buf_sz=0;
|
|
|
|
static int nb=0; /* no __STATIC__ decl. here! */
|
|
|
|
LM_REAL *a, *tau, *r, *work;
|
|
int a_sz, tau_sz, r_sz, tot_sz;
|
|
register int i, j;
|
|
int info, worksz, nrhs=1;
|
|
register LM_REAL sum;
|
|
|
|
if(!A)
|
|
#ifdef LINSOLVERS_RETAIN_MEMORY
|
|
{
|
|
if(buf) free(buf);
|
|
buf=NULL;
|
|
buf_sz=0;
|
|
|
|
return 1;
|
|
}
|
|
#else
|
|
return 1; /* NOP */
|
|
#endif /* LINSOLVERS_RETAIN_MEMORY */
|
|
|
|
if(m<n){
|
|
fprintf(stderr, RCAT("Normal equations require that the number of rows is greater than number of columns in ", AX_EQ_B_QRLS) "() [%d x %d]! -- try transposing\n", m, n);
|
|
exit(1);
|
|
}
|
|
|
|
/* calculate required memory size */
|
|
a_sz=m*n;
|
|
tau_sz=n;
|
|
r_sz=n*n;
|
|
if(!nb){
|
|
LM_REAL tmp;
|
|
|
|
worksz=-1; // workspace query; optimal size is returned in tmp
|
|
GEQRF((int *)&m, (int *)&m, NULL, (int *)&m, NULL, (LM_REAL *)&tmp, (int *)&worksz, (int *)&info);
|
|
nb=((int)tmp)/m; // optimal worksize is m*nb
|
|
}
|
|
worksz=nb*m;
|
|
tot_sz=a_sz + tau_sz + r_sz + worksz;
|
|
|
|
#ifdef LINSOLVERS_RETAIN_MEMORY
|
|
if(tot_sz>buf_sz){ /* insufficient memory, allocate a "big" memory chunk at once */
|
|
if(buf) free(buf); /* free previously allocated memory */
|
|
|
|
buf_sz=tot_sz;
|
|
buf=(LM_REAL *)malloc(buf_sz*sizeof(LM_REAL));
|
|
if(!buf){
|
|
fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_QRLS) "() failed!\n");
|
|
exit(1);
|
|
}
|
|
}
|
|
#else
|
|
buf_sz=tot_sz;
|
|
buf=(LM_REAL *)malloc(buf_sz*sizeof(LM_REAL));
|
|
if(!buf){
|
|
fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_QRLS) "() failed!\n");
|
|
exit(1);
|
|
}
|
|
#endif /* LINSOLVERS_RETAIN_MEMORY */
|
|
|
|
a=buf;
|
|
tau=a+a_sz;
|
|
r=tau+tau_sz;
|
|
work=r+r_sz;
|
|
|
|
/* store A (column major!) into a */
|
|
for(i=0; i<m; i++)
|
|
for(j=0; j<n; j++)
|
|
a[i+j*m]=A[i*n+j];
|
|
|
|
/* compute A^T b in x */
|
|
for(i=0; i<n; i++){
|
|
for(j=0, sum=0.0; j<m; j++)
|
|
sum+=A[j*n+i]*B[j];
|
|
x[i]=sum;
|
|
}
|
|
|
|
/* QR decomposition of A */
|
|
GEQRF((int *)&m, (int *)&n, a, (int *)&m, tau, work, (int *)&worksz, (int *)&info);
|
|
/* error treatment */
|
|
if(info!=0){
|
|
if(info<0){
|
|
fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", GEQRF) " in ", AX_EQ_B_QRLS) "()\n", -info);
|
|
exit(1);
|
|
}
|
|
else{
|
|
fprintf(stderr, RCAT(RCAT("Unknown LAPACK error %d for ", GEQRF) " in ", AX_EQ_B_QRLS) "()\n", info);
|
|
#ifndef LINSOLVERS_RETAIN_MEMORY
|
|
free(buf);
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* R is stored in the upper triangular part of a. Note that a is mxn while r nxn */
|
|
for(j=0; j<n; j++){
|
|
for(i=0; i<=j; i++)
|
|
r[i+j*n]=a[i+j*m];
|
|
|
|
/* lower part is zero */
|
|
for(i=j+1; i<n; i++)
|
|
r[i+j*n]=0.0;
|
|
}
|
|
|
|
/* solve the linear system R^T y = A^t b */
|
|
TRTRS("U", "T", "N", (int *)&n, (int *)&nrhs, r, (int *)&n, x, (int *)&n, &info);
|
|
/* error treatment */
|
|
if(info!=0){
|
|
if(info<0){
|
|
fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", TRTRS) " in ", AX_EQ_B_QRLS) "()\n", -info);
|
|
exit(1);
|
|
}
|
|
else{
|
|
fprintf(stderr, RCAT("LAPACK error: the %d-th diagonal element of A is zero (singular matrix) in ", AX_EQ_B_QRLS) "()\n", info);
|
|
#ifndef LINSOLVERS_RETAIN_MEMORY
|
|
free(buf);
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* solve the linear system R x = y */
|
|
TRTRS("U", "N", "N", (int *)&n, (int *)&nrhs, r, (int *)&n, x, (int *)&n, &info);
|
|
/* error treatment */
|
|
if(info!=0){
|
|
if(info<0){
|
|
fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", TRTRS) " in ", AX_EQ_B_QRLS) "()\n", -info);
|
|
exit(1);
|
|
}
|
|
else{
|
|
fprintf(stderr, RCAT("LAPACK error: the %d-th diagonal element of A is zero (singular matrix) in ", AX_EQ_B_QRLS) "()\n", info);
|
|
#ifndef LINSOLVERS_RETAIN_MEMORY
|
|
free(buf);
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
#ifndef LINSOLVERS_RETAIN_MEMORY
|
|
free(buf);
|
|
#endif
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* This function returns the solution of Ax=b
|
|
*
|
|
* The function assumes that A is symmetric & postive definite and employs
|
|
* the Cholesky decomposition:
|
|
* If A=L L^T with L lower triangular, the system to be solved becomes
|
|
* (L L^T) x = b
|
|
* This amounts to solving L y = b for y and then L^T x = y for x
|
|
*
|
|
* A is mxm, b is mx1
|
|
*
|
|
* The function returns 0 in case of error, 1 if successful
|
|
*
|
|
* This function is often called repetitively to solve problems of identical
|
|
* dimensions. To avoid repetitive malloc's and free's, allocated memory is
|
|
* retained between calls and free'd-malloc'ed when not of the appropriate size.
|
|
* A call with NULL as the first argument forces this memory to be released.
|
|
*/
|
|
int AX_EQ_B_CHOL(LM_REAL *A, LM_REAL *B, LM_REAL *x, int m)
|
|
{
|
|
__STATIC__ LM_REAL *buf=NULL;
|
|
__STATIC__ int buf_sz=0;
|
|
|
|
LM_REAL *a;
|
|
int a_sz, tot_sz;
|
|
int info, nrhs=1;
|
|
|
|
if(!A)
|
|
#ifdef LINSOLVERS_RETAIN_MEMORY
|
|
{
|
|
if(buf) free(buf);
|
|
buf=NULL;
|
|
buf_sz=0;
|
|
|
|
return 1;
|
|
}
|
|
#else
|
|
return 1; /* NOP */
|
|
#endif /* LINSOLVERS_RETAIN_MEMORY */
|
|
|
|
/* calculate required memory size */
|
|
a_sz=m*m;
|
|
tot_sz=a_sz;
|
|
|
|
#ifdef LINSOLVERS_RETAIN_MEMORY
|
|
if(tot_sz>buf_sz){ /* insufficient memory, allocate a "big" memory chunk at once */
|
|
if(buf) free(buf); /* free previously allocated memory */
|
|
|
|
buf_sz=tot_sz;
|
|
buf=(LM_REAL *)malloc(buf_sz*sizeof(LM_REAL));
|
|
if(!buf){
|
|
fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_CHOL) "() failed!\n");
|
|
exit(1);
|
|
}
|
|
}
|
|
#else
|
|
buf_sz=tot_sz;
|
|
buf=(LM_REAL *)malloc(buf_sz*sizeof(LM_REAL));
|
|
if(!buf){
|
|
fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_CHOL) "() failed!\n");
|
|
exit(1);
|
|
}
|
|
#endif /* LINSOLVERS_RETAIN_MEMORY */
|
|
|
|
a=buf;
|
|
|
|
/* store A into a and B into x. A is assumed symmetric,
|
|
* hence no transposition is needed
|
|
*/
|
|
memcpy(a, A, a_sz*sizeof(LM_REAL));
|
|
memcpy(x, B, m*sizeof(LM_REAL));
|
|
|
|
/* Cholesky decomposition of A */
|
|
//POTF2("L", (int *)&m, a, (int *)&m, (int *)&info);
|
|
POTRF("L", (int *)&m, a, (int *)&m, (int *)&info);
|
|
/* error treatment */
|
|
if(info!=0){
|
|
if(info<0){
|
|
fprintf(stderr, RCAT(RCAT(RCAT("LAPACK error: illegal value for argument %d of ", POTF2) "/", POTRF) " in ",
|
|
AX_EQ_B_CHOL) "()\n", -info);
|
|
exit(1);
|
|
}
|
|
else{
|
|
fprintf(stderr, RCAT(RCAT(RCAT("LAPACK error: the leading minor of order %d is not positive definite,\nthe factorization could not be completed for ", POTF2) "/", POTRF) " in ", AX_EQ_B_CHOL) "()\n", info);
|
|
#ifndef LINSOLVERS_RETAIN_MEMORY
|
|
free(buf);
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* solve using the computed Cholesky in one lapack call */
|
|
POTRS("L", (int *)&m, (int *)&nrhs, a, (int *)&m, x, (int *)&m, &info);
|
|
if(info<0){
|
|
fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", POTRS) " in ", AX_EQ_B_CHOL) "()\n", -info);
|
|
exit(1);
|
|
}
|
|
|
|
#if 0
|
|
/* alternative: solve the linear system L y = b ... */
|
|
TRTRS("L", "N", "N", (int *)&m, (int *)&nrhs, a, (int *)&m, x, (int *)&m, &info);
|
|
/* error treatment */
|
|
if(info!=0){
|
|
if(info<0){
|
|
fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", TRTRS) " in ", AX_EQ_B_CHOL) "()\n", -info);
|
|
exit(1);
|
|
}
|
|
else{
|
|
fprintf(stderr, RCAT("LAPACK error: the %d-th diagonal element of A is zero (singular matrix) in ", AX_EQ_B_CHOL) "()\n", info);
|
|
#ifndef LINSOLVERS_RETAIN_MEMORY
|
|
free(buf);
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* ... solve the linear system L^T x = y */
|
|
TRTRS("L", "T", "N", (int *)&m, (int *)&nrhs, a, (int *)&m, x, (int *)&m, &info);
|
|
/* error treatment */
|
|
if(info!=0){
|
|
if(info<0){
|
|
fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", TRTRS) "in ", AX_EQ_B_CHOL) "()\n", -info);
|
|
exit(1);
|
|
}
|
|
else{
|
|
fprintf(stderr, RCAT("LAPACK error: the %d-th diagonal element of A is zero (singular matrix) in ", AX_EQ_B_CHOL) "()\n", info);
|
|
#ifndef LINSOLVERS_RETAIN_MEMORY
|
|
free(buf);
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
}
|
|
#endif /* 0 */
|
|
|
|
#ifndef LINSOLVERS_RETAIN_MEMORY
|
|
free(buf);
|
|
#endif
|
|
|
|
return 1;
|
|
}
|
|
|
|
#ifdef HAVE_PLASMA
|
|
|
|
/* Linear algebra using PLASMA parallel library for multicore CPUs.
|
|
* http://icl.cs.utk.edu/plasma/
|
|
*
|
|
* WARNING: BLAS multithreading should be disabled, e.g. setenv MKL_NUM_THREADS 1
|
|
*/
|
|
|
|
#ifndef _LM_PLASMA_MISC_
|
|
/* avoid multiple inclusion of helper code */
|
|
#define _LM_PLASMA_MISC_
|
|
|
|
#include <plasma.h>
|
|
#include <cblas.h>
|
|
#include <lapacke.h>
|
|
#include <plasma_tmg.h>
|
|
#include <core_blas.h>
|
|
|
|
/* programmatically determine the number of cores on the current machine */
|
|
#ifdef _WIN32
|
|
#include <windows.h>
|
|
#elif __linux
|
|
#include <unistd.h>
|
|
#endif
|
|
static int getnbcores()
|
|
{
|
|
#ifdef _WIN32
|
|
SYSTEM_INFO sysinfo;
|
|
GetSystemInfo(&sysinfo);
|
|
return sysinfo.dwNumberOfProcessors;
|
|
#elif __linux
|
|
return sysconf(_SC_NPROCESSORS_ONLN);
|
|
#else // unknown system
|
|
return 2<<1; // will be halved by right shift below
|
|
#endif
|
|
}
|
|
|
|
static int PLASMA_ncores=-(getnbcores()>>1); // >0 if PLASMA initialized, <0 otherwise
|
|
|
|
/* user-specified number of cores */
|
|
void levmar_PLASMA_setnbcores(int cores)
|
|
{
|
|
PLASMA_ncores=(cores>0)? -cores : ((cores)? cores : -2);
|
|
}
|
|
#endif /* _LM_PLASMA_MISC_ */
|
|
|
|
/*
|
|
* This function returns the solution of Ax=b
|
|
*
|
|
* The function assumes that A is symmetric & positive definite and employs the
|
|
* Cholesky decomposition implemented by PLASMA for homogeneous multicore processors.
|
|
*
|
|
* A is mxm, b is mx1
|
|
*
|
|
* The function returns 0 in case of error, 1 if successfull
|
|
*
|
|
* This function is often called repetitively to solve problems of identical
|
|
* dimensions. To avoid repetitive malloc's and free's, allocated memory is
|
|
* retained between calls and free'd-malloc'ed when not of the appropriate size.
|
|
* A call with NULL as the first argument forces this memory to be released.
|
|
*/
|
|
int AX_EQ_B_PLASMA_CHOL(LM_REAL *A, LM_REAL *B, LM_REAL *x, int m)
|
|
{
|
|
__STATIC__ LM_REAL *buf=NULL;
|
|
__STATIC__ int buf_sz=0;
|
|
|
|
LM_REAL *a;
|
|
int a_sz, tot_sz;
|
|
int info, nrhs=1;
|
|
|
|
if(A==NULL){
|
|
#ifdef LINSOLVERS_RETAIN_MEMORY
|
|
if(buf) free(buf);
|
|
buf=NULL;
|
|
buf_sz=0;
|
|
#endif /* LINSOLVERS_RETAIN_MEMORY */
|
|
|
|
PLASMA_Finalize();
|
|
PLASMA_ncores=-PLASMA_ncores;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* calculate required memory size */
|
|
a_sz=m*m;
|
|
tot_sz=a_sz;
|
|
|
|
#ifdef LINSOLVERS_RETAIN_MEMORY
|
|
if(tot_sz>buf_sz){ /* insufficient memory, allocate a "big" memory chunk at once */
|
|
if(buf) free(buf); /* free previously allocated memory */
|
|
|
|
buf_sz=tot_sz;
|
|
buf=(LM_REAL *)malloc(buf_sz*sizeof(LM_REAL));
|
|
if(!buf){
|
|
fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_PLASMA_CHOL) "() failed!\n");
|
|
exit(1);
|
|
}
|
|
}
|
|
#else
|
|
buf_sz=tot_sz;
|
|
buf=(LM_REAL *)malloc(buf_sz*sizeof(LM_REAL));
|
|
if(!buf){
|
|
fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_PLASMA_CHOL) "() failed!\n");
|
|
exit(1);
|
|
}
|
|
#endif /* LINSOLVERS_RETAIN_MEMORY */
|
|
|
|
a=buf;
|
|
|
|
/* store A into a and B into x; A is assumed to be symmetric,
|
|
* hence no transposition is needed
|
|
*/
|
|
memcpy(a, A, a_sz*sizeof(LM_REAL));
|
|
memcpy(x, B, m*sizeof(LM_REAL));
|
|
|
|
/* initialize PLASMA */
|
|
if(PLASMA_ncores<0){
|
|
PLASMA_ncores=-PLASMA_ncores;
|
|
PLASMA_Init(PLASMA_ncores);
|
|
fprintf(stderr, RCAT("\n", AX_EQ_B_PLASMA_CHOL) "(): PLASMA is running on %d cores.\n\n", PLASMA_ncores);
|
|
}
|
|
|
|
/* Solve the linear system */
|
|
info=PLASMA_POSV(PlasmaLower, m, 1, a, m, x, m);
|
|
/* error treatment */
|
|
if(info!=0){
|
|
if(info<0){
|
|
fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", PLASMA_POSV) " in ",
|
|
AX_EQ_B_PLASMA_CHOL) "()\n", -info);
|
|
exit(1);
|
|
}
|
|
else{
|
|
fprintf(stderr, RCAT(RCAT("LAPACK error: the leading minor of order %d is not positive definite,\n"
|
|
"the factorization could not be completed for ", PLASMA_POSV) " in ", AX_EQ_B_CHOL) "()\n", info);
|
|
#ifndef LINSOLVERS_RETAIN_MEMORY
|
|
free(buf);
|
|
#endif
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
#ifndef LINSOLVERS_RETAIN_MEMORY
|
|
free(buf);
|
|
#endif
|
|
|
|
return 1;
|
|
}
|
|
#endif /* HAVE_PLASMA */
|
|
|
|
/*
|
|
* This function returns the solution of Ax = b
|
|
*
|
|
* The function employs LU decomposition:
|
|
* If A=L U with L lower and U upper triangular, then the original system
|
|
* amounts to solving
|
|
* L y = b, U x = y
|
|
*
|
|
* A is mxm, b is mx1
|
|
*
|
|
* The function returns 0 in case of error, 1 if successful
|
|
*
|
|
* This function is often called repetitively to solve problems of identical
|
|
* dimensions. To avoid repetitive malloc's and free's, allocated memory is
|
|
* retained between calls and free'd-malloc'ed when not of the appropriate size.
|
|
* A call with NULL as the first argument forces this memory to be released.
|
|
*/
|
|
int AX_EQ_B_LU(LM_REAL *A, LM_REAL *B, LM_REAL *x, int m)
|
|
{
|
|
__STATIC__ LM_REAL *buf=NULL;
|
|
__STATIC__ int buf_sz=0;
|
|
|
|
int a_sz, ipiv_sz, tot_sz;
|
|
register int i, j;
|
|
int info, *ipiv, nrhs=1;
|
|
LM_REAL *a;
|
|
|
|
if(!A)
|
|
#ifdef LINSOLVERS_RETAIN_MEMORY
|
|
{
|
|
if(buf) free(buf);
|
|
buf=NULL;
|
|
buf_sz=0;
|
|
|
|
return 1;
|
|
}
|
|
#else
|
|
return 1; /* NOP */
|
|
#endif /* LINSOLVERS_RETAIN_MEMORY */
|
|
|
|
/* calculate required memory size */
|
|
ipiv_sz=m;
|
|
a_sz=m*m;
|
|
tot_sz=a_sz*sizeof(LM_REAL) + ipiv_sz*sizeof(int); /* should be arranged in that order for proper doubles alignment */
|
|
|
|
#ifdef LINSOLVERS_RETAIN_MEMORY
|
|
if(tot_sz>buf_sz){ /* insufficient memory, allocate a "big" memory chunk at once */
|
|
if(buf) free(buf); /* free previously allocated memory */
|
|
|
|
buf_sz=tot_sz;
|
|
buf=(LM_REAL *)malloc(buf_sz);
|
|
if(!buf){
|
|
fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_LU) "() failed!\n");
|
|
exit(1);
|
|
}
|
|
}
|
|
#else
|
|
buf_sz=tot_sz;
|
|
buf=(LM_REAL *)malloc(buf_sz);
|
|
if(!buf){
|
|
fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_LU) "() failed!\n");
|
|
exit(1);
|
|
}
|
|
#endif /* LINSOLVERS_RETAIN_MEMORY */
|
|
|
|
a=buf;
|
|
ipiv=(int *)(a+a_sz);
|
|
|
|
/* store A (column major!) into a and B into x */
|
|
for(i=0; i<m; i++){
|
|
for(j=0; j<m; j++)
|
|
a[i+j*m]=A[i*m+j];
|
|
|
|
x[i]=B[i];
|
|
}
|
|
|
|
/* LU decomposition for A */
|
|
GETRF((int *)&m, (int *)&m, a, (int *)&m, ipiv, (int *)&info);
|
|
if(info!=0){
|
|
if(info<0){
|
|
fprintf(stderr, RCAT(RCAT("argument %d of ", GETRF) " illegal in ", AX_EQ_B_LU) "()\n", -info);
|
|
exit(1);
|
|
}
|
|
else{
|
|
fprintf(stderr, RCAT(RCAT("singular matrix A for ", GETRF) " in ", AX_EQ_B_LU) "()\n");
|
|
#ifndef LINSOLVERS_RETAIN_MEMORY
|
|
free(buf);
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* solve the system with the computed LU */
|
|
GETRS("N", (int *)&m, (int *)&nrhs, a, (int *)&m, ipiv, x, (int *)&m, (int *)&info);
|
|
if(info!=0){
|
|
if(info<0){
|
|
fprintf(stderr, RCAT(RCAT("argument %d of ", GETRS) " illegal in ", AX_EQ_B_LU) "()\n", -info);
|
|
exit(1);
|
|
}
|
|
else{
|
|
fprintf(stderr, RCAT(RCAT("unknown error for ", GETRS) " in ", AX_EQ_B_LU) "()\n");
|
|
#ifndef LINSOLVERS_RETAIN_MEMORY
|
|
free(buf);
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
#ifndef LINSOLVERS_RETAIN_MEMORY
|
|
free(buf);
|
|
#endif
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* This function returns the solution of Ax = b
|
|
*
|
|
* The function is based on SVD decomposition:
|
|
* If A=U D V^T with U, V orthogonal and D diagonal, the linear system becomes
|
|
* (U D V^T) x = b or x=V D^{-1} U^T b
|
|
* Note that V D^{-1} U^T is the pseudoinverse A^+
|
|
*
|
|
* A is mxm, b is mx1.
|
|
*
|
|
* The function returns 0 in case of error, 1 if successful
|
|
*
|
|
* This function is often called repetitively to solve problems of identical
|
|
* dimensions. To avoid repetitive malloc's and free's, allocated memory is
|
|
* retained between calls and free'd-malloc'ed when not of the appropriate size.
|
|
* A call with NULL as the first argument forces this memory to be released.
|
|
*/
|
|
int AX_EQ_B_SVD(LM_REAL *A, LM_REAL *B, LM_REAL *x, int m)
|
|
{
|
|
__STATIC__ LM_REAL *buf=NULL;
|
|
__STATIC__ int buf_sz=0;
|
|
static LM_REAL eps=LM_CNST(-1.0);
|
|
|
|
register int i, j;
|
|
LM_REAL *a, *u, *s, *vt, *work;
|
|
int a_sz, u_sz, s_sz, vt_sz, tot_sz;
|
|
LM_REAL thresh, one_over_denom;
|
|
register LM_REAL sum;
|
|
int info, rank, worksz, *iwork, iworksz;
|
|
|
|
if(!A)
|
|
#ifdef LINSOLVERS_RETAIN_MEMORY
|
|
{
|
|
if(buf) free(buf);
|
|
buf=NULL;
|
|
buf_sz=0;
|
|
|
|
return 1;
|
|
}
|
|
#else
|
|
return 1; /* NOP */
|
|
#endif /* LINSOLVERS_RETAIN_MEMORY */
|
|
|
|
/* calculate required memory size */
|
|
#if 1 /* use optimal size */
|
|
worksz=-1; // workspace query. Keep in mind that GESDD requires more memory than GESVD
|
|
/* note that optimal work size is returned in thresh */
|
|
GESVD("A", "A", (int *)&m, (int *)&m, NULL, (int *)&m, NULL, NULL, (int *)&m, NULL, (int *)&m, (LM_REAL *)&thresh, (int *)&worksz, &info);
|
|
//GESDD("A", (int *)&m, (int *)&m, NULL, (int *)&m, NULL, NULL, (int *)&m, NULL, (int *)&m, (LM_REAL *)&thresh, (int *)&worksz, NULL, &info);
|
|
worksz=(int)thresh;
|
|
#else /* use minimum size */
|
|
worksz=5*m; // min worksize for GESVD
|
|
//worksz=m*(7*m+4); // min worksize for GESDD
|
|
#endif
|
|
iworksz=8*m;
|
|
a_sz=m*m;
|
|
u_sz=m*m; s_sz=m; vt_sz=m*m;
|
|
|
|
tot_sz=(a_sz + u_sz + s_sz + vt_sz + worksz)*sizeof(LM_REAL) + iworksz*sizeof(int); /* should be arranged in that order for proper doubles alignment */
|
|
|
|
#ifdef LINSOLVERS_RETAIN_MEMORY
|
|
if(tot_sz>buf_sz){ /* insufficient memory, allocate a "big" memory chunk at once */
|
|
if(buf) free(buf); /* free previously allocated memory */
|
|
|
|
buf_sz=tot_sz;
|
|
buf=(LM_REAL *)malloc(buf_sz);
|
|
if(!buf){
|
|
fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_SVD) "() failed!\n");
|
|
exit(1);
|
|
}
|
|
}
|
|
#else
|
|
buf_sz=tot_sz;
|
|
buf=(LM_REAL *)malloc(buf_sz);
|
|
if(!buf){
|
|
fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_SVD) "() failed!\n");
|
|
exit(1);
|
|
}
|
|
#endif /* LINSOLVERS_RETAIN_MEMORY */
|
|
|
|
a=buf;
|
|
u=a+a_sz;
|
|
s=u+u_sz;
|
|
vt=s+s_sz;
|
|
work=vt+vt_sz;
|
|
iwork=(int *)(work+worksz);
|
|
|
|
/* store A (column major!) into a */
|
|
for(i=0; i<m; i++)
|
|
for(j=0; j<m; j++)
|
|
a[i+j*m]=A[i*m+j];
|
|
|
|
/* SVD decomposition of A */
|
|
GESVD("A", "A", (int *)&m, (int *)&m, a, (int *)&m, s, u, (int *)&m, vt, (int *)&m, work, (int *)&worksz, &info);
|
|
//GESDD("A", (int *)&m, (int *)&m, a, (int *)&m, s, u, (int *)&m, vt, (int *)&m, work, (int *)&worksz, iwork, &info);
|
|
|
|
/* error treatment */
|
|
if(info!=0){
|
|
if(info<0){
|
|
fprintf(stderr, RCAT(RCAT(RCAT("LAPACK error: illegal value for argument %d of ", GESVD), "/" GESDD) " in ", AX_EQ_B_SVD) "()\n", -info);
|
|
exit(1);
|
|
}
|
|
else{
|
|
fprintf(stderr, RCAT("LAPACK error: dgesdd (dbdsdc)/dgesvd (dbdsqr) failed to converge in ", AX_EQ_B_SVD) "() [info=%d]\n", info);
|
|
#ifndef LINSOLVERS_RETAIN_MEMORY
|
|
free(buf);
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
if(eps<0.0){
|
|
LM_REAL aux;
|
|
|
|
/* compute machine epsilon */
|
|
for(eps=LM_CNST(1.0); aux=eps+LM_CNST(1.0), aux-LM_CNST(1.0)>0.0; eps*=LM_CNST(0.5))
|
|
;
|
|
eps*=LM_CNST(2.0);
|
|
}
|
|
|
|
/* compute the pseudoinverse in a */
|
|
for(i=0; i<a_sz; i++) a[i]=0.0; /* initialize to zero */
|
|
for(rank=0, thresh=eps*s[0]; rank<m && s[rank]>thresh; rank++){
|
|
one_over_denom=LM_CNST(1.0)/s[rank];
|
|
|
|
for(j=0; j<m; j++)
|
|
for(i=0; i<m; i++)
|
|
a[i*m+j]+=vt[rank+i*m]*u[j+rank*m]*one_over_denom;
|
|
}
|
|
|
|
/* compute A^+ b in x */
|
|
for(i=0; i<m; i++){
|
|
for(j=0, sum=0.0; j<m; j++)
|
|
sum+=a[i*m+j]*B[j];
|
|
x[i]=sum;
|
|
}
|
|
|
|
#ifndef LINSOLVERS_RETAIN_MEMORY
|
|
free(buf);
|
|
#endif
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* This function returns the solution of Ax = b for a real symmetric matrix A
|
|
*
|
|
* The function is based on LDLT factorization with the pivoting
|
|
* strategy of Bunch and Kaufman:
|
|
* A is factored as L*D*L^T where L is lower triangular and
|
|
* D symmetric and block diagonal (aka spectral decomposition,
|
|
* Banachiewicz factorization, modified Cholesky factorization)
|
|
*
|
|
* A is mxm, b is mx1.
|
|
*
|
|
* The function returns 0 in case of error, 1 if successfull
|
|
*
|
|
* This function is often called repetitively to solve problems of identical
|
|
* dimensions. To avoid repetitive malloc's and free's, allocated memory is
|
|
* retained between calls and free'd-malloc'ed when not of the appropriate size.
|
|
* A call with NULL as the first argument forces this memory to be released.
|
|
*/
|
|
int AX_EQ_B_BK(LM_REAL *A, LM_REAL *B, LM_REAL *x, int m)
|
|
{
|
|
__STATIC__ LM_REAL *buf=NULL;
|
|
__STATIC__ int buf_sz=0, nb=0;
|
|
|
|
LM_REAL *a, *work;
|
|
int a_sz, ipiv_sz, work_sz, tot_sz;
|
|
int info, *ipiv, nrhs=1;
|
|
|
|
if(!A)
|
|
#ifdef LINSOLVERS_RETAIN_MEMORY
|
|
{
|
|
if(buf) free(buf);
|
|
buf=NULL;
|
|
buf_sz=0;
|
|
|
|
return 1;
|
|
}
|
|
#else
|
|
return 1; /* NOP */
|
|
#endif /* LINSOLVERS_RETAIN_MEMORY */
|
|
|
|
/* calculate required memory size */
|
|
ipiv_sz=m;
|
|
a_sz=m*m;
|
|
if(!nb){
|
|
LM_REAL tmp;
|
|
|
|
work_sz=-1; // workspace query; optimal size is returned in tmp
|
|
SYTRF("L", (int *)&m, NULL, (int *)&m, NULL, (LM_REAL *)&tmp, (int *)&work_sz, (int *)&info);
|
|
nb=((int)tmp)/m; // optimal worksize is m*nb
|
|
}
|
|
work_sz=(nb!=-1)? nb*m : 1;
|
|
tot_sz=(a_sz + work_sz)*sizeof(LM_REAL) + ipiv_sz*sizeof(int); /* should be arranged in that order for proper doubles alignment */
|
|
|
|
#ifdef LINSOLVERS_RETAIN_MEMORY
|
|
if(tot_sz>buf_sz){ /* insufficient memory, allocate a "big" memory chunk at once */
|
|
if(buf) free(buf); /* free previously allocated memory */
|
|
|
|
buf_sz=tot_sz;
|
|
buf=(LM_REAL *)malloc(buf_sz);
|
|
if(!buf){
|
|
fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_BK) "() failed!\n");
|
|
exit(1);
|
|
}
|
|
}
|
|
#else
|
|
buf_sz=tot_sz;
|
|
buf=(LM_REAL *)malloc(buf_sz);
|
|
if(!buf){
|
|
fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_BK) "() failed!\n");
|
|
exit(1);
|
|
}
|
|
#endif /* LINSOLVERS_RETAIN_MEMORY */
|
|
|
|
a=buf;
|
|
work=a+a_sz;
|
|
ipiv=(int *)(work+work_sz);
|
|
|
|
/* store A into a and B into x; A is assumed to be symmetric, hence
|
|
* the column and row major order representations are the same
|
|
*/
|
|
memcpy(a, A, a_sz*sizeof(LM_REAL));
|
|
memcpy(x, B, m*sizeof(LM_REAL));
|
|
|
|
/* LDLt factorization for A */
|
|
SYTRF("L", (int *)&m, a, (int *)&m, ipiv, work, (int *)&work_sz, (int *)&info);
|
|
if(info!=0){
|
|
if(info<0){
|
|
fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", SYTRF) " in ", AX_EQ_B_BK) "()\n", -info);
|
|
exit(1);
|
|
}
|
|
else{
|
|
fprintf(stderr, RCAT(RCAT("LAPACK error: singular block diagonal matrix D for", SYTRF) " in ", AX_EQ_B_BK)"() [D(%d, %d) is zero]\n", info, info);
|
|
#ifndef LINSOLVERS_RETAIN_MEMORY
|
|
free(buf);
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* solve the system with the computed factorization */
|
|
SYTRS("L", (int *)&m, (int *)&nrhs, a, (int *)&m, ipiv, x, (int *)&m, (int *)&info);
|
|
if(info<0){
|
|
fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", SYTRS) " in ", AX_EQ_B_BK) "()\n", -info);
|
|
exit(1);
|
|
}
|
|
|
|
#ifndef LINSOLVERS_RETAIN_MEMORY
|
|
free(buf);
|
|
#endif
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* undefine all. IT MUST REMAIN IN THIS POSITION IN FILE */
|
|
#undef AX_EQ_B_QR
|
|
#undef AX_EQ_B_QRLS
|
|
#undef AX_EQ_B_CHOL
|
|
#undef AX_EQ_B_LU
|
|
#undef AX_EQ_B_SVD
|
|
#undef AX_EQ_B_BK
|
|
#undef AX_EQ_B_PLASMA_CHOL
|
|
|
|
#undef GEQRF
|
|
#undef ORGQR
|
|
#undef TRTRS
|
|
#undef POTF2
|
|
#undef POTRF
|
|
#undef POTRS
|
|
#undef GETRF
|
|
#undef GETRS
|
|
#undef GESVD
|
|
#undef GESDD
|
|
#undef SYTRF
|
|
#undef SYTRS
|
|
#undef PLASMA_POSV
|
|
|
|
#else // no LAPACK
|
|
|
|
/* precision-specific definitions */
|
|
#define AX_EQ_B_LU LM_ADD_PREFIX(Ax_eq_b_LU_noLapack)
|
|
|
|
/*
|
|
* This function returns the solution of Ax = b
|
|
*
|
|
* The function employs LU decomposition followed by forward/back substitution (see
|
|
* also the LAPACK-based LU solver above)
|
|
*
|
|
* A is mxm, b is mx1
|
|
*
|
|
* The function returns 0 in case of error, 1 if successful
|
|
*
|
|
* This function is often called repetitively to solve problems of identical
|
|
* dimensions. To avoid repetitive malloc's and free's, allocated memory is
|
|
* retained between calls and free'd-malloc'ed when not of the appropriate size.
|
|
* A call with NULL as the first argument forces this memory to be released.
|
|
*/
|
|
int AX_EQ_B_LU(LM_REAL *A, LM_REAL *B, LM_REAL *x, int m)
|
|
{
|
|
__STATIC__ void *buf=NULL;
|
|
__STATIC__ int buf_sz=0;
|
|
|
|
register int i, j, k;
|
|
int *idx, maxi=-1, idx_sz, a_sz, work_sz, tot_sz;
|
|
LM_REAL *a, *work, max, sum, tmp;
|
|
|
|
if(!A)
|
|
#ifdef LINSOLVERS_RETAIN_MEMORY
|
|
{
|
|
if(buf) free(buf);
|
|
buf=NULL;
|
|
buf_sz=0;
|
|
|
|
return 1;
|
|
}
|
|
#else
|
|
return 1; /* NOP */
|
|
#endif /* LINSOLVERS_RETAIN_MEMORY */
|
|
|
|
/* calculate required memory size */
|
|
idx_sz=m;
|
|
a_sz=m*m;
|
|
work_sz=m;
|
|
tot_sz=(a_sz+work_sz)*sizeof(LM_REAL) + idx_sz*sizeof(int); /* should be arranged in that order for proper doubles alignment */
|
|
|
|
#ifdef LINSOLVERS_RETAIN_MEMORY
|
|
if(tot_sz>buf_sz){ /* insufficient memory, allocate a "big" memory chunk at once */
|
|
if(buf) free(buf); /* free previously allocated memory */
|
|
|
|
buf_sz=tot_sz;
|
|
buf=(void *)malloc(tot_sz);
|
|
if(!buf){
|
|
fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_LU) "() failed!\n");
|
|
exit(1);
|
|
}
|
|
}
|
|
#else
|
|
buf_sz=tot_sz;
|
|
buf=(void *)malloc(tot_sz);
|
|
if(!buf){
|
|
fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_LU) "() failed!\n");
|
|
exit(1);
|
|
}
|
|
#endif /* LINSOLVERS_RETAIN_MEMORY */
|
|
|
|
a=buf;
|
|
work=a+a_sz;
|
|
idx=(int *)(work+work_sz);
|
|
|
|
/* avoid destroying A, B by copying them to a, x resp. */
|
|
memcpy(a, A, a_sz*sizeof(LM_REAL));
|
|
memcpy(x, B, m*sizeof(LM_REAL));
|
|
|
|
/* compute the LU decomposition of a row permutation of matrix a; the permutation itself is saved in idx[] */
|
|
for(i=0; i<m; ++i){
|
|
max=0.0;
|
|
for(j=0; j<m; ++j)
|
|
if((tmp=FABS(a[i*m+j]))>max)
|
|
max=tmp;
|
|
if(max==0.0){
|
|
fprintf(stderr, RCAT("Singular matrix A in ", AX_EQ_B_LU) "()!\n");
|
|
#ifndef LINSOLVERS_RETAIN_MEMORY
|
|
free(buf);
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
work[i]=LM_CNST(1.0)/max;
|
|
}
|
|
|
|
for(j=0; j<m; ++j){
|
|
for(i=0; i<j; ++i){
|
|
sum=a[i*m+j];
|
|
for(k=0; k<i; ++k)
|
|
sum-=a[i*m+k]*a[k*m+j];
|
|
a[i*m+j]=sum;
|
|
}
|
|
max=0.0;
|
|
for(i=j; i<m; ++i){
|
|
sum=a[i*m+j];
|
|
for(k=0; k<j; ++k)
|
|
sum-=a[i*m+k]*a[k*m+j];
|
|
a[i*m+j]=sum;
|
|
if((tmp=work[i]*FABS(sum))>=max){
|
|
max=tmp;
|
|
maxi=i;
|
|
}
|
|
}
|
|
if(j!=maxi){
|
|
for(k=0; k<m; ++k){
|
|
tmp=a[maxi*m+k];
|
|
a[maxi*m+k]=a[j*m+k];
|
|
a[j*m+k]=tmp;
|
|
}
|
|
work[maxi]=work[j];
|
|
}
|
|
idx[j]=maxi;
|
|
if(a[j*m+j]==0.0)
|
|
a[j*m+j]=LM_REAL_EPSILON;
|
|
if(j!=m-1){
|
|
tmp=LM_CNST(1.0)/(a[j*m+j]);
|
|
for(i=j+1; i<m; ++i)
|
|
a[i*m+j]*=tmp;
|
|
}
|
|
}
|
|
|
|
/* The decomposition has now replaced a. Solve the linear system using
|
|
* forward and back substitution
|
|
*/
|
|
for(i=k=0; i<m; ++i){
|
|
j=idx[i];
|
|
sum=x[j];
|
|
x[j]=x[i];
|
|
if(k!=0)
|
|
for(j=k-1; j<i; ++j)
|
|
sum-=a[i*m+j]*x[j];
|
|
else
|
|
if(sum!=0.0)
|
|
k=i+1;
|
|
x[i]=sum;
|
|
}
|
|
|
|
for(i=m-1; i>=0; --i){
|
|
sum=x[i];
|
|
for(j=i+1; j<m; ++j)
|
|
sum-=a[i*m+j]*x[j];
|
|
x[i]=sum/a[i*m+i];
|
|
}
|
|
|
|
#ifndef LINSOLVERS_RETAIN_MEMORY
|
|
free(buf);
|
|
#endif
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* undefine all. IT MUST REMAIN IN THIS POSITION IN FILE */
|
|
#undef AX_EQ_B_LU
|
|
|
|
#endif /* HAVE_LAPACK */
|