mirror of
https://github.com/GoldenCheetah/GoldenCheetah.git
synced 2026-02-14 08:38:45 +00:00
980 lines
25 KiB
C++
980 lines
25 KiB
C++
/*
|
|
* Copyright (c) 2014 Mark Liversedge (liversedge@gmail.com)
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by the Free
|
|
* Software Foundation; either version 2 of the License, or (at your option)
|
|
* any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program; if not, write to the Free Software Foundation, Inc., 51
|
|
* Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
#include "PDModel.h"
|
|
|
|
// base class for all models
|
|
PDModel::PDModel(Context *context) :
|
|
QwtSyntheticPointData(PDMODEL_MAXT),
|
|
inverseTime(false),
|
|
context(context),
|
|
sanI1(0), sanI2(0), anI1(0), anI2(0), aeI1(0), aeI2(0), laeI1(0), laeI2(0),
|
|
cp(0), tau(0), t0(0), minutes(false)
|
|
{
|
|
setInterval(QwtInterval(1, PDMODEL_MAXT));
|
|
setSize(PDMODEL_MAXT);
|
|
}
|
|
|
|
// set data using doubles always
|
|
void
|
|
PDModel::setData(QVector<double> meanMaxPower)
|
|
{
|
|
cp = tau = t0 = 0; // reset on new data
|
|
data.resize(meanMaxPower.size());
|
|
data = meanMaxPower;
|
|
emit dataChanged();
|
|
}
|
|
|
|
void
|
|
PDModel::setMinutes(bool x)
|
|
{
|
|
minutes = x;
|
|
if (minutes) {
|
|
setInterval(QwtInterval(1.00f / 60.00f, double(PDMODEL_MAXT)/ 60.00f));
|
|
setSize(PDMODEL_MAXT);
|
|
}
|
|
}
|
|
|
|
double PDModel::x(unsigned int index) const
|
|
{
|
|
double returning = 1;
|
|
|
|
// don't start at zero !
|
|
index += 1;
|
|
|
|
if (minutes) returning = (double(index)/60.00f);
|
|
else returning = index;
|
|
|
|
// reverse !
|
|
if (inverseTime) return 1.00f / returning;
|
|
else return returning;
|
|
}
|
|
|
|
|
|
// set data using floats, we convert
|
|
void
|
|
PDModel::setData(QVector<float> meanMaxPower)
|
|
{
|
|
cp = tau = t0 = 0; // reset on new data
|
|
data.resize(meanMaxPower.size());
|
|
for (int i=0; i< data.size(); i++) data[i] = meanMaxPower[i];
|
|
emit dataChanged();
|
|
}
|
|
|
|
// set the intervals to search for bests
|
|
void
|
|
PDModel::setIntervals(double sanI1, double sanI2, double anI1, double anI2,
|
|
double aeI1, double aeI2, double laeI1, double laeI2)
|
|
{
|
|
this->sanI1 = sanI1;
|
|
this->sanI2 = sanI2;
|
|
this->anI1 = anI1;
|
|
this->anI2 = anI2;
|
|
this->aeI1 = aeI1;
|
|
this->aeI2 = aeI2;
|
|
this->laeI1 = laeI1;
|
|
this->laeI2 = laeI2;
|
|
|
|
emit intervalsChanged();
|
|
}
|
|
|
|
// using the data and intervals from above, derive the
|
|
// cp, tau and t0 values needed for the model
|
|
// this is the function originally found in CPPlot
|
|
void
|
|
PDModel::deriveCPParameters(int model)
|
|
{
|
|
// bit of a hack, but the model deriving code is shared
|
|
// basically because it does pretty much the same thing
|
|
// for all the models and I didn't want to abstract it
|
|
// any further, so we pass the subclass as a model number
|
|
// to control which intervals and formula to use
|
|
// where model is
|
|
// 0 = CP 2 parameter
|
|
// 1 = CP 3 parameter
|
|
// 2 = Extended Model (Damien)
|
|
// 3 = Veloclinic (Mike P)
|
|
// 4 = Ward Smith
|
|
|
|
// bounds on anaerobic interval in minutes
|
|
const double t1 = anI1;
|
|
const double t2 = anI2;
|
|
|
|
// bounds on aerobic interval in minutes
|
|
const double t3 = aeI1;
|
|
const double t4 = aeI2;
|
|
|
|
// bounds of these time values in the data
|
|
int i1, i2, i3, i4;
|
|
|
|
// find the indexes associated with the bounds
|
|
// the first point must be at least the minimum for the anaerobic interval, or quit
|
|
for (i1 = 0; i1 < t1; i1++)
|
|
if (i1 + 1 > data.size())
|
|
return;
|
|
// the second point is the maximum point suitable for anaerobicly dominated efforts.
|
|
for (i2 = i1; i2 + 1 <= t2; i2++)
|
|
if (i2 + 1 > data.size())
|
|
return;
|
|
// the third point is the beginning of the minimum duration for aerobic efforts
|
|
for (i3 = i2; i3 < t3; i3++)
|
|
if (i3 + 1 > data.size())
|
|
return;
|
|
for (i4 = i3; i4 + 1 <= t4; i4++)
|
|
if (i4 + 1 > data.size())
|
|
break;
|
|
|
|
// initial estimate of tau
|
|
if (tau == 0) tau = 1;
|
|
|
|
// initial estimate of cp (if not already available)
|
|
if (cp == 0) cp = 300;
|
|
|
|
// initial estimate of t0: start small to maximize sensitivity to data
|
|
t0 = 0;
|
|
|
|
// lower bound on tau
|
|
const double tau_min = 0.5;
|
|
|
|
// convergence delta for tau
|
|
const double tau_delta_max = 1e-4;
|
|
const double t0_delta_max = 1e-4;
|
|
|
|
// previous loop value of tau and t0
|
|
double tau_prev;
|
|
double t0_prev;
|
|
|
|
// maximum number of loops
|
|
const int max_loops = 100;
|
|
|
|
// loop to convergence
|
|
int iteration = 0;
|
|
do {
|
|
|
|
// bounds check, don't go on for ever
|
|
if (iteration++ > max_loops) break;
|
|
|
|
// record the previous version of tau, for convergence
|
|
tau_prev = tau;
|
|
t0_prev = t0;
|
|
|
|
// estimate cp, given tau
|
|
int i;
|
|
cp = 0;
|
|
for (i = i3; i < i4; i++) {
|
|
double cpn = data[i] / (1 + tau / (t0 + i / 60.0));
|
|
if (cp < cpn)
|
|
cp = cpn;
|
|
}
|
|
|
|
// if cp = 0; no valid data; give up
|
|
if (cp == 0.0)
|
|
return;
|
|
|
|
// estimate tau, given cp
|
|
tau = tau_min;
|
|
for (i = i1; i <= i2; i++) {
|
|
double taun = (data[i] / cp - 1) * (i / 60.0 + t0) - t0;
|
|
if (tau < taun)
|
|
tau = taun;
|
|
}
|
|
|
|
// estimate t0 - but only for veloclinic/3parm cp
|
|
// where model is non-zero (CP2 is nonzero)
|
|
if (model) t0 = tau / (data[1] / cp - 1) - 1 / 60.0;
|
|
|
|
} while ((fabs(tau - tau_prev) > tau_delta_max) || (fabs(t0 - t0_prev) > t0_delta_max));
|
|
}
|
|
|
|
//
|
|
// Classic 2 Parameter Model
|
|
//
|
|
|
|
CP2Model::CP2Model(Context *context) :
|
|
PDModel(context)
|
|
{
|
|
// set default intervals to search CP 2-20
|
|
anI1=100;
|
|
anI2=120;
|
|
aeI1=1000;
|
|
aeI2=1200;
|
|
|
|
connect (this, SIGNAL(dataChanged()), this, SLOT(onDataChanged()));
|
|
connect (this, SIGNAL(intervalsChanged()), this, SLOT(onIntervalsChanged()));
|
|
}
|
|
|
|
// P(t) - return y for t in 2 parameter model
|
|
double
|
|
CP2Model::y(double t) const
|
|
{
|
|
// don't start at zero !
|
|
t += (!minutes?1.00f:1/60.00f);
|
|
|
|
// adjust to seconds
|
|
if (minutes) t *= 60.00f;
|
|
|
|
// classic model - W' / t + CP
|
|
return (cp * tau * 60) / t + cp;
|
|
}
|
|
|
|
// 2 parameter model can calculate these
|
|
double
|
|
CP2Model::WPrime()
|
|
{
|
|
// kjoules
|
|
return (cp * tau * 60);
|
|
}
|
|
|
|
double
|
|
CP2Model::CP()
|
|
{
|
|
return cp;
|
|
}
|
|
|
|
// could have just connected signal to slot
|
|
// but might want to be more sophisticated in future
|
|
void CP2Model::onDataChanged()
|
|
{
|
|
// calc tau etc and make sure the interval is
|
|
// set correctly - i.e. 'domain of validity'
|
|
deriveCPParameters(0);
|
|
setInterval(QwtInterval(tau, PDMODEL_MAXT));
|
|
|
|
}
|
|
|
|
void CP2Model::onIntervalsChanged()
|
|
{
|
|
deriveCPParameters(0);
|
|
setInterval(QwtInterval(tau, PDMODEL_MAXT));
|
|
}
|
|
|
|
//
|
|
// Morton 3 Parameter Model
|
|
//
|
|
CP3Model::CP3Model(Context *context) :
|
|
PDModel(context)
|
|
{
|
|
// set default intervals to search CP 30-60
|
|
anI1=1800;
|
|
anI2=2400;
|
|
aeI1=2400;
|
|
aeI2=3600;
|
|
|
|
connect (this, SIGNAL(dataChanged()), this, SLOT(onDataChanged()));
|
|
connect (this, SIGNAL(intervalsChanged()), this, SLOT(onIntervalsChanged()));
|
|
}
|
|
|
|
// P(t) - return y for t in 2 parameter model
|
|
double
|
|
CP3Model::y(double t) const
|
|
{
|
|
// don't start at zero !
|
|
t += (!minutes?1.00f:1/60.00f);
|
|
|
|
// adjust to seconds
|
|
if (minutes) t *= 60.00f;
|
|
|
|
// classic model - W' / t + CP
|
|
return cp * (double(1.00f)+tau /(((double(t)/double(60))+t0)));
|
|
}
|
|
|
|
// 2 parameter model can calculate these
|
|
double
|
|
CP3Model::WPrime()
|
|
{
|
|
// kjoules
|
|
return (cp * tau * 60);
|
|
}
|
|
|
|
double
|
|
CP3Model::CP()
|
|
{
|
|
return cp;
|
|
}
|
|
|
|
double
|
|
CP3Model::PMax()
|
|
{
|
|
// casting to double across to ensure we don't lose precision
|
|
// but basically its the max value of the curve at time t of 1s
|
|
// which is cp * 1 + tau / ((t/60) + t0)
|
|
return cp * (double(1.00f)+tau /(((double(1)/double(60))+t0)));
|
|
}
|
|
|
|
|
|
// could have just connected signal to slot
|
|
// but might want to be more sophisticated in future
|
|
void CP3Model::onDataChanged()
|
|
{
|
|
// calc tau etc and make sure the interval is
|
|
// set correctly - i.e. 'domain of validity'
|
|
deriveCPParameters(1);
|
|
setInterval(QwtInterval(tau, PDMODEL_MAXT));
|
|
|
|
}
|
|
|
|
void CP3Model::onIntervalsChanged()
|
|
{
|
|
deriveCPParameters(1);
|
|
setInterval(QwtInterval(tau, PDMODEL_MAXT));
|
|
}
|
|
|
|
//
|
|
// Ward Smith Model
|
|
//
|
|
WSModel::WSModel(Context *context) : PDModel(context)
|
|
{
|
|
// set default intervals to search CP 30-60
|
|
anI1=1800;
|
|
anI2=2400;
|
|
aeI1=2400;
|
|
aeI2=3600;
|
|
|
|
connect (this, SIGNAL(dataChanged()), this, SLOT(onDataChanged()));
|
|
connect (this, SIGNAL(intervalsChanged()), this, SLOT(onIntervalsChanged()));
|
|
}
|
|
|
|
// P(t) - return y for t in 2 parameter model
|
|
double
|
|
WSModel::y(double t) const
|
|
{
|
|
// don't start at zero !
|
|
t += (!minutes?1.00f:1/60.00f);
|
|
|
|
// adjust to seconds
|
|
if (minutes) t *= 60.00f;
|
|
|
|
//WPrime and PMax
|
|
double WPrime = cp * tau * 60;
|
|
double PMax = cp * (double(1.00f)+tau /(((double(1)/double(60))+t0)));
|
|
double wPMax = PMax-cp;
|
|
|
|
// WS Model P(t) = W'/t * (1- exp(-t/( W'/(wPmax)))) + CP
|
|
return ((WPrime / (double(t))) * (1- exp(-t/(WPrime/wPMax)))) + cp;
|
|
}
|
|
|
|
// 2 parameter model can calculate these
|
|
double
|
|
WSModel::WPrime()
|
|
{
|
|
// kjoules
|
|
return (cp * tau * 60);
|
|
}
|
|
|
|
double
|
|
WSModel::CP()
|
|
{
|
|
return cp;
|
|
}
|
|
|
|
double
|
|
WSModel::FTP()
|
|
{
|
|
return y(45 * 60);
|
|
}
|
|
|
|
double
|
|
WSModel::PMax()
|
|
{
|
|
// casting to double across to ensure we don't lose precision
|
|
// but basically its the max value of the curve at time t of 1s
|
|
// which is cp * 1 + tau / ((t/60) + t0)
|
|
double WPrime = cp * tau * 60;
|
|
double PMax = cp * (double(1.00f)+tau /(((double(1)/double(60))+t0)));
|
|
double wPMax = PMax-cp;
|
|
|
|
// WS Model P(t) = W'/t * (1- exp(-t/( W'/(wPmax)))) + CP
|
|
return ((WPrime / (double(1))) * (1- exp(-1/(WPrime/wPMax)))) + cp;
|
|
}
|
|
|
|
|
|
// could have just connected signal to slot
|
|
// but might want to be more sophisticated in future
|
|
void WSModel::onDataChanged()
|
|
{
|
|
// calc tau etc and make sure the interval is
|
|
// set correctly - i.e. 'domain of validity'
|
|
deriveCPParameters(4);
|
|
setInterval(QwtInterval(tau, PDMODEL_MAXT));
|
|
|
|
}
|
|
|
|
void WSModel::onIntervalsChanged()
|
|
{
|
|
deriveCPParameters(4);
|
|
setInterval(QwtInterval(tau, PDMODEL_MAXT));
|
|
}
|
|
|
|
//
|
|
// Veloclinic Multicomponent Model
|
|
//
|
|
// p(t) = pc1 + pc2
|
|
// Power at time t is the sum of;
|
|
// pc1 - the power from component 1 (fast twitch pools)
|
|
// pc2 - the power from component 2 (slow twitch motor units)
|
|
//
|
|
// The inputs are derived from the CP2-20 model and 3 constants:
|
|
//
|
|
// Pmax - as derived from the CP2-20 model (via t0)
|
|
// w1 - W' as derived from the CP2-20 model
|
|
// p1 - pmax - cp as derived from the CP2-20 model
|
|
// p2 - cp as derived from the CP2-20 model
|
|
// tau1 - W'1 / p1
|
|
// tau2 - 15,000
|
|
// w2 - A slow twitch W' derived from p2 * tau2
|
|
// alpha- 0.1 thru -0.1, we default to zero
|
|
// beta - 1.0
|
|
//
|
|
// Fast twitch component is:
|
|
// pc1(t) = W'1 / t * (1-exp(-t/tau1)) * ((1-exp(-t/10)) ^ (1/alpha))
|
|
//
|
|
// Slow twitch component has three formulations:
|
|
// sprint capped linear) pc2(t) = p2 * tau2 * (1-exp(-t/tau2))
|
|
// sprint capped regeneration) pc2(t) = p2 / (1 + t/tau2)
|
|
// sprint capped exponential) pc2(t) = p2 / (1 + t/5400) ^ (1/beta)
|
|
//
|
|
// Currently deciding which of the three formulations to use
|
|
// as the base for GoldenCheetah (we have enough models already !)
|
|
MultiModel::MultiModel(Context *context) :
|
|
PDModel(context),
|
|
variant(0), w1(0), p1(0), p2(0), tau1(0), tau2(0), alpha(0), beta(0)
|
|
{
|
|
// set default intervals to search CP 30-60
|
|
// uses the same as the 3 parameter model
|
|
anI1=1800;
|
|
anI2=2400;
|
|
aeI1=2400;
|
|
aeI2=3600;
|
|
|
|
variant = 0; // use exp top/bottom by default.
|
|
|
|
connect (this, SIGNAL(dataChanged()), this, SLOT(onDataChanged()));
|
|
connect (this, SIGNAL(intervalsChanged()), this, SLOT(onIntervalsChanged()));
|
|
}
|
|
|
|
void
|
|
MultiModel::setVariant(int variant)
|
|
{
|
|
this->variant = variant;
|
|
emit intervalsChanged(); // refresh then
|
|
}
|
|
|
|
|
|
// P(t) - return y for t in 2 parameter model
|
|
double
|
|
MultiModel::y(double t) const
|
|
{
|
|
// don't start at zero !
|
|
t += (!minutes?1.00f:1/60.00f);
|
|
|
|
// adjust to seconds
|
|
if (minutes) t *= 60.00f;
|
|
|
|
// two component model
|
|
double pc1 = w1 / t * (1.00f - exp(-t/tau1)) * pow(1-exp(-t/10.00f), alpha);
|
|
|
|
// which variant for pc2 ?
|
|
double pc2 = 0.0f;
|
|
switch (variant) {
|
|
|
|
default:
|
|
case 0 : // exponential top and bottom
|
|
pc2 = p2 * tau2 / t * (1-exp(-t/tau2));
|
|
break;
|
|
|
|
case 1 : // linear feedback
|
|
pc2 = p2 / (1+t/tau2);
|
|
break;
|
|
|
|
case 2 : // regeneration
|
|
pc2 = pow(p2 / (1+t/5400),1/beta);
|
|
//pc2 = p2 / pow((1+t/5400),(1/beta));
|
|
break;
|
|
|
|
}
|
|
|
|
return (pc1 + pc2);
|
|
}
|
|
|
|
double
|
|
MultiModel::FTP()
|
|
{
|
|
if (data.size()) return y(minutes ? 60 : 3600);
|
|
return 0;
|
|
}
|
|
|
|
// 2 parameter model can calculate these
|
|
double
|
|
MultiModel::WPrime()
|
|
{
|
|
// kjoules -- add in difference between CP60 from
|
|
// velo model and cp as derived
|
|
return w1;
|
|
}
|
|
|
|
double
|
|
MultiModel::CP()
|
|
{
|
|
if (data.size()) return y(minutes ? 60 : 3600);
|
|
return 0;
|
|
}
|
|
|
|
double
|
|
MultiModel::PMax()
|
|
{
|
|
// casting to double across to ensure we don't lose precision
|
|
// but basically its the max value of the curve at time t of 1s
|
|
// which is cp * 1 + tau / ((t/60) + t0)
|
|
return cp * (double(1.00f)+tau /(((double(1)/double(60))+t0)));
|
|
}
|
|
|
|
|
|
// could have just connected signal to slot
|
|
// but might want to be more sophisticated in future
|
|
void MultiModel::onDataChanged()
|
|
{
|
|
// calc tau etc and make sure the interval is
|
|
// set correctly - i.e. 'domain of validity'
|
|
deriveCPParameters(3);
|
|
|
|
// and veloclinic parameters too;
|
|
w1 = cp*tau*60; // initial estimate from classic cp model
|
|
p1 = PMax() - cp;
|
|
p2 = cp;
|
|
tau1 = w1 / p1;
|
|
tau2 = 15000;
|
|
alpha = 0.0f;
|
|
beta = 1.0;
|
|
|
|
// now account for model -- this is rather problematic
|
|
// since the formula uses cp/w' as derived via CP220 but
|
|
// the resulting W' is higher.
|
|
//w1 = (cp + (cp-CP())) * tau * 60;
|
|
|
|
setInterval(QwtInterval(tau, PDMODEL_MAXT));
|
|
}
|
|
|
|
void MultiModel::onIntervalsChanged()
|
|
{
|
|
deriveCPParameters(3);
|
|
|
|
// and veloclinic parameters too;
|
|
w1 = cp*tau*60; // initial estimate from classic model
|
|
p1 = PMax() - cp;
|
|
p2 = cp;
|
|
tau1 = w1 / p1;
|
|
tau2 = 15000;
|
|
alpha = 0.0f;
|
|
beta = 1.0;
|
|
|
|
// now account for model -- this is rather problematic
|
|
// since the formula uses cp/w' as derived via CP220 but
|
|
// the resulting W' is higher.
|
|
w1 = (cp + (cp-CP())) * tau * 60;
|
|
|
|
|
|
setInterval(QwtInterval(tau, PDMODEL_MAXT));
|
|
}
|
|
|
|
//
|
|
// Extended CP Model
|
|
//
|
|
ExtendedModel::ExtendedModel(Context *context) :
|
|
PDModel(context),
|
|
paa(0), paa_dec(0), ecp(0), etau(0), ecp_del(0), tau_del(0), ecp_dec(0),
|
|
ecp_dec_del(0)
|
|
{
|
|
// set default intervals to search Extended CP
|
|
sanI1=20;
|
|
sanI2=90;
|
|
anI1=120;
|
|
anI2=300;
|
|
aeI1=600;
|
|
aeI2=3000;
|
|
laeI1=3600;
|
|
laeI2=30000;
|
|
|
|
connect (this, SIGNAL(dataChanged()), this, SLOT(onDataChanged()));
|
|
connect (this, SIGNAL(intervalsChanged()), this, SLOT(onIntervalsChanged()));
|
|
}
|
|
|
|
// P(t) - return y for t in Extended model
|
|
double
|
|
ExtendedModel::y(double t) const
|
|
{
|
|
// don't start at zero !
|
|
if (t == 0)
|
|
qDebug() << "ExtendedModel t=0 !!";
|
|
|
|
if (!minutes) t /= 60.00f;
|
|
return paa*(1.20-0.20*exp(-1*double(t)))*exp(paa_dec*(double(t))) + ecp * (1-exp(tau_del*double(t))) * (1-exp(ecp_del*double(t))) * (1+ecp_dec*exp(ecp_dec_del/double(t))) * ( 1 + etau/(double(t)));
|
|
}
|
|
|
|
// 2 parameter model can calculate these
|
|
double
|
|
ExtendedModel::WPrime()
|
|
{
|
|
// kjoules
|
|
return (ecp * etau * 60);
|
|
}
|
|
|
|
double
|
|
ExtendedModel::CP()
|
|
{
|
|
return ecp;
|
|
}
|
|
|
|
double
|
|
ExtendedModel::PMax()
|
|
{
|
|
// casting to double across to ensure we don't lose precision
|
|
// but basically its the max value of the curve at time t of 1s
|
|
// which is cp * 1 + tau / ((t/60) + t0)
|
|
return paa*(1.20-0.20*exp(-1*(1/60.0)))*exp(paa_dec*(1/60.0)) + ecp * (1-exp(tau_del*(1/60.0))) * (1-exp(ecp_del*(1/60.0))) * (1+ecp_dec*exp(ecp_dec_del/(1/60.0))) * ( 1 + etau/(1/60.0));
|
|
}
|
|
|
|
double
|
|
ExtendedModel::FTP()
|
|
{
|
|
// casting to double across to ensure we don't lose precision
|
|
// but basically its the max value of the curve at time t of 1s
|
|
// which is cp * 1 + tau / ((t/60) + t0)
|
|
return paa*(1.20-0.20*exp(-1*60.0))*exp(paa_dec*(60.0)) + ecp * (1-exp(tau_del*(60.0))) * (1-exp(ecp_del*60.0)) * (1+ecp_dec*exp(ecp_dec_del/60.0)) * ( 1 + etau/(60.0));
|
|
}
|
|
|
|
|
|
// could have just connected signal to slot
|
|
// but might want to be more sophisticated in future
|
|
void
|
|
ExtendedModel::onDataChanged()
|
|
{
|
|
// calc tau etc and make sure the interval is
|
|
// set correctly - i.e. 'domain of validity'
|
|
deriveExtCPParameters();
|
|
setInterval(QwtInterval(etau, PDMODEL_MAXT));
|
|
|
|
}
|
|
|
|
void
|
|
ExtendedModel::onIntervalsChanged()
|
|
{
|
|
deriveExtCPParameters();
|
|
setInterval(QwtInterval(etau, PDMODEL_MAXT));
|
|
}
|
|
|
|
void
|
|
ExtendedModel::deriveExtCPParameters()
|
|
{
|
|
// bounds on anaerobic interval in minutes
|
|
const double t1 = sanI1;
|
|
const double t2 = sanI2;
|
|
|
|
// bounds on anaerobic interval in minutes
|
|
const double t3 = anI1;
|
|
const double t4 = anI2;
|
|
|
|
// bounds on aerobic interval in minutes
|
|
const double t5 = aeI1;
|
|
const double t6 = aeI2;
|
|
|
|
// bounds on long aerobic interval in minutes
|
|
const double t7 = laeI1;
|
|
const double t8 = laeI2;
|
|
|
|
// bounds of these time values in the data
|
|
int i1, i2, i3, i4, i5, i6, i7, i8;
|
|
|
|
// find the indexes associated with the bounds
|
|
// the first point must be at least the minimum for the anaerobic interval, or quit
|
|
for (i1 = 0; i1 < t1; i1++)
|
|
if (i1 + 1 > data.size())
|
|
return;
|
|
// the second point is the maximum point suitable for anaerobicly dominated efforts.
|
|
for (i2 = i1; i2 + 1 <= t2; i2++)
|
|
if (i2 + 1 >= data.size())
|
|
return;
|
|
|
|
// the third point is the beginning of the minimum duration for aerobic efforts
|
|
for (i3 = i2; i3 < t3; i3++)
|
|
if (i3 + 1 >= data.size())
|
|
return;
|
|
for (i4 = i3; i4 + 1 <= t4; i4++)
|
|
if (i4 + 1 >= data.size())
|
|
break;
|
|
|
|
// the fifth point is the beginning of the minimum duration for aerobic efforts
|
|
for (i5 = i4; i5 < t5; i5++)
|
|
if (i5 + 1 >= data.size())
|
|
return;
|
|
for (i6 = i5; i6 + 1 <= t6; i6++)
|
|
if (i6 + 1 >= data.size())
|
|
break;
|
|
|
|
// the first point must be at least the minimum for the anaerobic interval, or quit
|
|
for (i7 = i6; i7 < t7; i7++)
|
|
if (i7 + 1 >= data.size())
|
|
return;
|
|
// the second point is the maximum point suitable for anaerobicly dominated efforts.
|
|
for (i8 = i7; i8 + 1 <= t8; i8++)
|
|
if (i8 + 1 >= data.size())
|
|
break;
|
|
|
|
|
|
|
|
// initial estimate
|
|
paa = 300;
|
|
etau = 1;
|
|
ecp = 300;
|
|
paa_dec = -2;
|
|
ecp_del = -0.9;
|
|
tau_del = -4.8;
|
|
ecp_dec = -1;
|
|
ecp_dec_del = -180;
|
|
|
|
// lower bound
|
|
const double paa_min = 100;
|
|
const double etau_min = 0.5;
|
|
const double paa_dec_max = -0.25;
|
|
const double paa_dec_min = -3;
|
|
const double ecp_dec_min = -5;
|
|
|
|
// convergence delta
|
|
const double etau_delta_max = 1e-4;
|
|
const double paa_delta_max = 1e-2;
|
|
const double paa_dec_delta_max = 1e-4;
|
|
const double ecp_del_delta_max = 1e-4;
|
|
const double ecp_dec_delta_max = 1e-8;
|
|
|
|
// previous loop values
|
|
double etau_prev;
|
|
double paa_prev;
|
|
double paa_dec_prev;
|
|
double ecp_del_prev;
|
|
double ecp_dec_prev;
|
|
|
|
// maximum number of loops
|
|
const int max_loops = 100;
|
|
|
|
// loop to convergence
|
|
int iteration = 0;
|
|
do {
|
|
|
|
// bounds check, don't go on for ever
|
|
if (iteration++ > max_loops) break;
|
|
|
|
// record the previous version of tau, for convergence
|
|
etau_prev = etau;
|
|
paa_prev = paa;
|
|
paa_dec_prev = paa_dec;
|
|
ecp_del_prev = ecp_del;
|
|
ecp_dec_prev = ecp_dec;
|
|
|
|
// estimate cp, given tau
|
|
int i;
|
|
ecp = 0;
|
|
for (i = i5; i <= i6; i++) {
|
|
double ecpn = (data[i] - paa * (1.20-0.20*exp(-1*(i/60.0))) * exp(paa_dec*(i/60.0))) / (1-exp(tau_del*i/60.0)) / (1-exp(ecp_del*i/60.0)) / (1+ecp_dec*exp(ecp_dec_del/(i/60.0))) / ( 1 + etau/(i/60.0));
|
|
|
|
if (ecp < ecpn)
|
|
ecp = ecpn;
|
|
}
|
|
|
|
|
|
// if cp = 0; no valid data; give up
|
|
if (ecp == 0.0)
|
|
return;
|
|
|
|
// estimate etau, given ecp
|
|
etau = etau_min;
|
|
for (i = i3; i <= i4; i++) {
|
|
double etaun = ((data[i] - paa * (1.20-0.20*exp(-1*(i/60.0))) * exp(paa_dec*(i/60.0))) / ecp / (1-exp(tau_del*i/60.0)) / (1-exp(ecp_del*i/60.0)) / (1+ecp_dec*exp(ecp_dec_del/(i/60.0))) - 1) * (i/60.0);
|
|
|
|
if (etau < etaun)
|
|
etau = etaun;
|
|
}
|
|
|
|
// estimate paa_dec
|
|
paa_dec = paa_dec_min;
|
|
for (i = i1; i <= i2; i++) {
|
|
double paa_decn = log((data[i] - ecp * (1-exp(tau_del*i/60.0)) * (1-exp(ecp_del*i/60.0)) * (1+ecp_dec*exp(ecp_dec_del/(i/60.0))) * ( 1 + etau/(i/60.0)) ) / paa / (1.20-0.20*exp(-1*(i/60.0))) ) / (i/60.0);
|
|
|
|
if (paa_dec < paa_decn && paa_decn < paa_dec_max) {
|
|
paa_dec = paa_decn;
|
|
}
|
|
}
|
|
|
|
paa = paa_min;
|
|
double _avg_paa = 0.0;
|
|
int count=1;
|
|
for (i = 2; i <= 8; i++) {
|
|
double paan = (data[i] - ecp * (1-exp(tau_del*i/60.0)) * (1-exp(ecp_del*i/60.0)) * (1+ecp_dec*exp(ecp_dec_del/(i/60.0))) * ( 1 + etau/(i/60.0))) / exp(paa_dec*(i/60.0)) / (1.20-0.20*exp(-1*(i/60.0)));
|
|
_avg_paa = (double)((count-1)*_avg_paa+paan)/count;
|
|
|
|
if (paa < paan)
|
|
paa = paan;
|
|
count++;
|
|
}
|
|
if (_avg_paa<0.95*paa) {
|
|
paa = _avg_paa;
|
|
}
|
|
|
|
|
|
ecp_dec = ecp_dec_min;
|
|
for (i = i7; i <= i8; i=i+120) {
|
|
double ecp_decn = ((data[i] - paa * (1.20-0.20*exp(-1*(i/60.0))) * exp(paa_dec*(i/60.0))) / ecp / (1-exp(tau_del*i/60.0)) / (1-exp(ecp_del*i/60.0)) / ( 1 + etau/(i/60.0)) -1 ) / exp(ecp_dec_del/(i / 60.0));
|
|
|
|
if (ecp_decn > 0) ecp_decn = 0;
|
|
|
|
if (ecp_dec < ecp_decn)
|
|
ecp_dec = ecp_decn;
|
|
}
|
|
|
|
|
|
} while ((fabs(etau - etau_prev) > etau_delta_max) ||
|
|
(fabs(paa - paa_prev) > paa_delta_max) ||
|
|
(fabs(paa_dec - paa_dec_prev) > paa_dec_delta_max) ||
|
|
(fabs(ecp_del - ecp_del_prev) > ecp_del_delta_max) ||
|
|
(fabs(ecp_dec - ecp_dec_prev) > ecp_dec_delta_max)
|
|
);
|
|
|
|
// What did we get ...
|
|
// To help debug this below we output the derived values
|
|
// commented out for release, its quite a mouthful !
|
|
|
|
#if 0
|
|
int pMax = paa*(1.20-0.20*exp(-1*(1/60.0)))*exp(paa_dec*(1/60.0)) + ecp *
|
|
(1-exp(tau_del*(1/60.0))) * (1-exp(ecp_del*(1/60.0))) *
|
|
(1+ecp_dec*exp(ecp_dec_del/(1/60.0))) *
|
|
(1+etau/(1/60.0));
|
|
|
|
int mmp60 = paa*(1.20-0.20*exp(-1*60.0))*exp(paa_dec*(60.0)) + ecp *
|
|
(1-exp(tau_del*(60.0))) * (1-exp(ecp_del*60.0)) *
|
|
(1+ecp_dec*exp(ecp_dec_del/60.0)) *
|
|
(1+etau/(60.0));
|
|
|
|
qDebug() <<"eCP(5.3) " << "paa" << paa << "ecp" << ecp << "etau" << etau
|
|
<< "paa_dec" << paa_dec << "ecp_del" << ecp_del << "ecp_dec"
|
|
<< ecp_dec << "ecp_dec_del" << ecp_dec_del;
|
|
|
|
qDebug() <<"eCP(5.3) " << "pmax" << pMax << "mmp60" << mmp60;
|
|
#endif
|
|
}
|
|
|
|
void MultiModel::loadParameters(QList<double>&here)
|
|
{
|
|
cp = here[0];
|
|
tau = here[1];
|
|
t0 = here[2];
|
|
w1 = here[3];
|
|
p1 = here[4];
|
|
p2 = here[5];
|
|
tau1 = here[6];
|
|
tau2 = here[7];
|
|
alpha = here[8];
|
|
beta = here[9];
|
|
}
|
|
|
|
void MultiModel::saveParameters(QList<double>&here)
|
|
{
|
|
here.clear();
|
|
here << cp;
|
|
here << tau;
|
|
here << t0;
|
|
here << w1;
|
|
here << p1;
|
|
here << p2;
|
|
here << tau1;
|
|
here << tau2;
|
|
here << alpha;
|
|
here << beta;
|
|
}
|
|
|
|
void ExtendedModel::loadParameters(QList<double>&here)
|
|
{
|
|
cp = here[0];
|
|
tau = here[1];
|
|
t0 = here[2];
|
|
paa = here[3];
|
|
etau = here[4];
|
|
ecp = here[5];
|
|
paa_dec = here[6];
|
|
ecp_del = here[7];
|
|
tau_del = here[8];
|
|
ecp_dec = here[9];
|
|
ecp_dec_del = here[10];
|
|
}
|
|
|
|
void ExtendedModel::saveParameters(QList<double>&here)
|
|
{
|
|
here.clear();
|
|
here << cp;
|
|
here << tau;
|
|
here << t0;
|
|
here << paa;
|
|
here << etau;
|
|
here << ecp;
|
|
here << paa_dec;
|
|
here << ecp_del;
|
|
here << tau_del;
|
|
here << ecp_dec;
|
|
here << ecp_dec_del;
|
|
}
|
|
|
|
// 2 and 3 parameter models only load and save cp, tau and t0
|
|
void CP2Model::loadParameters(QList<double>&here)
|
|
{
|
|
cp = here[0];
|
|
tau = here[1];
|
|
t0 = here[2];
|
|
}
|
|
|
|
void CP2Model::saveParameters(QList<double>&here)
|
|
{
|
|
here.clear();
|
|
here << cp;
|
|
here << tau;
|
|
here << t0;
|
|
}
|
|
|
|
void CP3Model::loadParameters(QList<double>&here)
|
|
{
|
|
cp = here[0];
|
|
tau = here[1];
|
|
t0 = here[2];
|
|
}
|
|
void CP3Model::saveParameters(QList<double>&here)
|
|
{
|
|
here.clear();
|
|
here << cp;
|
|
here << tau;
|
|
here << t0;
|
|
}
|
|
void WSModel::loadParameters(QList<double>&here)
|
|
{
|
|
cp = here[0];
|
|
tau = here[1];
|
|
t0 = here[2];
|
|
}
|
|
void WSModel::saveParameters(QList<double>&here)
|
|
{
|
|
here.clear();
|
|
here << cp;
|
|
here << tau;
|
|
here << t0;
|
|
}
|