Files
GoldenCheetah/src/PfPvPlot.cpp
Joern 1a8d683303 Store GC Settings in multiple .INI files instead of system specific (Registry, PLIST,..) format
... change storage format to .INI files (which is QTs cross-system format)
... differentiate between System, Global and Athlete specific settings
... store the Global Settings in the AthleteDirectory (root)
... store the Athlete specific Settings in the Athletes Names subdir /config
... migrate existing Settings from current location into new formats "on-the-fly"
2015-09-19 11:13:17 +02:00

1369 lines
43 KiB
C++

/*
* Copyright (c) 2008 Sean C. Rhea (srhea@srhea.net),
* J.T Conklin (jtc@acorntoolworks.com)
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc., 51
* Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "PfPvPlot.h"
#include "Athlete.h"
#include "Context.h"
#include "RideFile.h"
#include "RideItem.h"
#include "IntervalItem.h"
#include "Settings.h"
#include "Zones.h"
#include "Colors.h"
#include <cmath>
#include <qwt_series_data.h>
#include <qwt_legend.h>
#include <qwt_plot_canvas.h>
#include <qwt_plot_curve.h>
#include <qwt_plot_marker.h>
#include <qwt_scale_draw.h>
#include <qwt_scale_widget.h>
#include <qwt_symbol.h>
#include <set>
#define PI M_PI
// Zone labels are drawn if power zone bands are enabled, automatically
// at the center of the plot
class PfPvPlotZoneLabel: public QwtPlotItem
{
private:
PfPvPlot *parent;
int zone_number;
double watts;
QwtText text;
public:
PfPvPlotZoneLabel(PfPvPlot *_parent, int _zone_number)
{
parent = _parent;
RideItem *rideItem = parent->rideItem;
zone_number = _zone_number;
// get zone data from ride or athlete ...
const Zones *zones;
int zone_range = -1;
if (parent->context->isCompareIntervals) {
zones = parent->context->athlete->zones();
if (!zones) return;
// use first compare interval date
if (parent->context->compareIntervals.count())
zone_range = zones->whichRange(parent->context->compareIntervals[0].data->startTime().date());
// still not set
if (zone_range == -1)
zone_range = zones->whichRange(QDate::currentDate());
} else if (rideItem && parent->context->athlete->zones()) {
zones = parent->context->athlete->zones();
zone_range = zones->whichRange(rideItem->dateTime.date());
} else {
return; // nulls
}
setZ(1.0 + zone_number / 100.0);
// create new zone labels if we're shading
if (zone_range >= 0) {
// retrieve zone setup
QList <int> zone_lows = zones->getZoneLows(zone_range);
QList <QString> zone_names = zones->getZoneNames(zone_range);
int num_zones = zone_lows.size();
if(zone_names.size() != num_zones) return;
if (zone_number < num_zones) {
watts = ((zone_number + 1 < num_zones) ? 0.5 * (zone_lows[zone_number] + zone_lows[zone_number + 1]) : ( (zone_number > 0) ? (1.5 * zone_lows[zone_number] - 0.5 * zone_lows[zone_number - 1]) : 2.0 * zone_lows[zone_number]));
text = QwtText(zone_names[zone_number]);
text.setFont(QFont("Helvetica",24, QFont::Bold));
QColor text_color = zoneColor(zone_number, num_zones);
text_color.setAlpha(64);
text.setColor(text_color);
}
}
}
virtual int rtti() const {
return QwtPlotItem::Rtti_PlotUserItem;
}
void draw(QPainter *painter, const QwtScaleMap &xMap, const QwtScaleMap &yMap, const QRectF &rect) const {
if (parent->shadeZones() && (rect.width() > 0) && (rect.height() > 0)) {
// draw the label along a plot diagonal:
// 1. x*y = watts * dx/dv * dy/df
// 2. x/width = y/height
// =>
// 1. x^2 = width/height * watts
// 2. y^2 = height/width * watts
double xscale = fabs(xMap.transform(parent->maxCPV) - xMap.transform(0)) / parent->maxCPV;
double yscale = fabs(yMap.transform(parent->maxAEPF) - yMap.transform(0)) / parent->maxAEPF;
if ((xscale > 0) && (yscale > 0)) {
double w = watts * xscale * yscale;
int x = xMap.transform(sqrt(w * rect.width() / rect.height()) / xscale);
int y = yMap.transform(sqrt(w * rect.height() / rect.width()) / yscale);
// the following code based on source for QwtPlotMarker::draw()
QRect tr(QPoint(0, 0), text.textSize(painter->font()).toSize());
tr.moveCenter(QPoint(x, y));
text.draw(painter, tr);
}
}
}
};
PfPvPlot::PfPvPlot(Context *context)
: rideItem (NULL), context(context), hover(NULL), cp_ (0), cad_ (85), cl_ (0.175), shade_zones(true)
{
static_cast<QwtPlotCanvas*>(canvas())->setFrameStyle(QFrame::NoFrame);
setAutoFillBackground(true);
setAxisTitle(yLeft, tr("Average Effective Pedal Force (N)"));
setAxisScale(yLeft, 0, 600);
setAxisTitle(xBottom, tr("Circumferential Pedal Velocity (m/s)"));
setAxisScale(xBottom, 0, 3);
setAxisMaxMinor(yLeft, 0);
setAxisMaxMinor(xBottom, 0);
QwtScaleDraw *sd = new QwtScaleDraw;
sd->setTickLength(QwtScaleDiv::MajorTick, 3);
setAxisScaleDraw(xBottom, sd);
sd = new QwtScaleDraw;
sd->setTickLength(QwtScaleDiv::MajorTick, 3);
sd->enableComponent(QwtScaleDraw::Ticks, false);
sd->enableComponent(QwtScaleDraw::Backbone, false);
setAxisScaleDraw(yLeft, sd);
mX = new QwtPlotMarker();
mX->setLineStyle(QwtPlotMarker::VLine);
mX->attach(this);
mY = new QwtPlotMarker();
mY->setLineStyle(QwtPlotMarker::HLine);
mY->attach(this);
cpCurve = new QwtPlotCurve();
cpCurve->setRenderHint(QwtPlotItem::RenderAntialiased);
cpCurve->attach(this);
curve = new QwtPlotCurve();
curve->attach(this);
cl_ = appsettings->cvalue(context->athlete->cyclist, GC_CRANKLENGTH).toDouble() / 1000.0;
// markup timeInQuadrant
tiqMarker[0] = new QwtPlotMarker(); tiqMarker[0]->attach(this);
tiqMarker[0]->setXValue(2.9);
tiqMarker[0]->setYValue(580);
tiqMarker[1] = new QwtPlotMarker(); tiqMarker[1]->attach(this);
tiqMarker[1]->setXValue(0.1);
tiqMarker[1]->setYValue(580);
tiqMarker[2] = new QwtPlotMarker(); tiqMarker[2]->attach(this);
tiqMarker[2]->setXValue(0.1);
tiqMarker[2]->setYValue(10);
tiqMarker[3] = new QwtPlotMarker(); tiqMarker[3]->attach(this);
tiqMarker[3]->setXValue(2.9);
tiqMarker[3]->setYValue(10);
merge_intervals = false;
frame_intervals = true;
gear_ratio_display = false;
// only default on first time through, after this the user may have adjusted
if (appsettings->value(this, GC_SHADEZONES, true).toBool()==false) shade_zones = false;
else shade_zones = true;
configChanged(CONFIG_APPEARANCE);
recalc();
}
void
PfPvPlot::configChanged(qint32)
{
setCanvasBackground(GColor(CPLOTBACKGROUND));
// frame with inverse of background
QwtSymbol *sym = new QwtSymbol;
sym->setStyle(QwtSymbol::Ellipse);
sym->setSize(4);
sym->setPen(QPen(Qt::red));
sym->setBrush(QBrush(Qt::red));
curve->setSymbol(sym);
curve->setStyle(QwtPlotCurve::Dots);
curve->setRenderHint(QwtPlotItem::RenderAntialiased);
QPalette palette;
palette.setBrush(QPalette::Window, QBrush(GColor(CPLOTBACKGROUND)));
palette.setColor(QPalette::WindowText, GColor(CPLOTMARKER));
palette.setColor(QPalette::Text, GColor(CPLOTMARKER));
setPalette(palette);
axisWidget(QwtPlot::xBottom)->setPalette(palette);
axisWidget(QwtPlot::yLeft)->setPalette(palette);
// use grid line color for mX, mY and CPcurve
QPen marker = GColor(CPLOTMARKER);
QPen cp = GColor(CCP);
mX->setLinePen(marker);
mY->setLinePen(marker);
cpCurve->setPen(cp);
setCL(appsettings->cvalue(context->athlete->cyclist, GC_CRANKLENGTH).toDouble() / 1000.0);
replot();
}
void
PfPvPlot::setAxisTitle(int axis, QString label)
{
// setup the default fonts
QFont stGiles; // hoho - Chart Font St. Giles ... ok you have to be British to get this joke
stGiles.fromString(appsettings->value(this, GC_FONT_CHARTLABELS, QFont().toString()).toString());
stGiles.setPointSize(appsettings->value(NULL, GC_FONT_CHARTLABELS_SIZE, 8).toInt());
QwtText title(label);
title.setFont(stGiles);
QwtPlot::setAxisFont(axis, stGiles);
QwtPlot::setAxisTitle(axis, title);
}
void
PfPvPlot::refreshZoneItems()
{
// clear out any zone curves which are presently defined
if (zoneCurves.size()) {
QListIterator<QwtPlotCurve *> i(zoneCurves);
while (i.hasNext()) {
QwtPlotCurve *curve = i.next();
curve->detach();
//delete curve;
}
}
zoneCurves.clear();
// delete any existing power zone labels
if (zoneLabels.size()) {
QListIterator<PfPvPlotZoneLabel *> i(zoneLabels);
while (i.hasNext()) {
PfPvPlotZoneLabel *label = i.next();
label->detach();
delete label;
}
}
zoneLabels.clear();
// set zones from ride or athlete and date of
// first item in the compare set
const Zones *zones = context->athlete->zones();
int zone_range = -1;
// comparing does zones for items selected not current ride
if (context->isCompareIntervals) {
// no athlete zones anyway!
if (!zones) return;
// use first compare interval date
if (context->compareIntervals.count()) {
zone_range = zones->whichRange(context->compareIntervals[0].data->startTime().date());
}
// still not set
if (zone_range == -1) {
zone_range = zones->whichRange(QDate::currentDate());
}
} else if (rideItem && zones) {
zone_range = zones->whichRange(rideItem->dateTime.date());
} else {
return; // null ride and not compare etc
}
if (zone_range >= 0) {
setCP(zones->getCP(zone_range));
// populate the zone curves
QList <int> zone_power = zones->getZoneLows(zone_range);
QList <QString> zone_name = zones->getZoneNames(zone_range);
int num_zones = zone_power.size();
if (zone_name.size() != num_zones) return;
if (num_zones > 0) {
QPen *pen = new QPen();
pen->setStyle(Qt::NoPen);
QwtArray<double> yvalues;
// generate x values
for (int z = 0; z < num_zones; z ++) {
QwtPlotCurve *curve = new QwtPlotCurve(zone_name[z]);
curve->setPen(*pen);
QColor brush_color = zoneColor(z, num_zones);
brush_color.setHsv(brush_color.hue(), brush_color.saturation() / 4, brush_color.value());
curve->setBrush(brush_color); // fill below the line
curve->setZ(1 - 1e-6 * zone_power[z]);
// generate data for curve
if (z < num_zones - 1) {
QwtArray <double> contour_yvalues;
int watts = zone_power[z + 1];
int dwatts = (double) watts;
for (int i = 0; i < contour_xvalues.size(); i ++) {
contour_yvalues.append( (1e6 * contour_xvalues[i] < watts) ? 1e6 : dwatts / contour_xvalues[i]);
}
curve->setSamples(contour_xvalues, contour_yvalues);
} else {
// top zone has a curve at "infinite" power
QwtArray <double> contour_x;
QwtArray <double> contour_y;
contour_x.append(contour_xvalues[0]);
contour_x.append(contour_xvalues[contour_xvalues.size() - 1]);
contour_y.append(1e6);
contour_y.append(1e6);
curve->setSamples(contour_x, contour_y);
}
curve->setVisible(shade_zones);
curve->attach(this);
zoneCurves.append(curve);
}
delete pen;
// generate labels for existing zones
for (int z = 0; z < num_zones; z ++) {
PfPvPlotZoneLabel *label = new PfPvPlotZoneLabel(this, z);
label->setVisible(shade_zones);
label->attach(this);
zoneLabels.append(label);
}
}
}
}
// how many intervals selected?
int PfPvPlot::intervalCount() const
{
return rideItem->intervalsSelected().count();
}
void
PfPvPlot::mouseTrack(double cad, double watts)
{
if (watts <= 0 || cad <= 0) return;
double aepf = (watts * 60.0) / (cad * cl_ * 2.0 * PI);
double cpv = (cad * cl_ * 2.0 * PI) / 60.0;
if (rideItem && rideItem->ride() && rideItem->intervals().count() >= intervalMarkers.count()) {
// are we hovering "close" to an interval marker ?
int index = 0;
foreach (QwtPlotMarker *is, intervalMarkers) {
double x = is->xValue() - cpv;
double y = is->yValue() - aepf;
if ((x > -0.05f && x < 0.05f) && (y > -3 && y < 3)) {
context->notifyIntervalHover(rideItem->intervals()[index]);
}
index++;
}
}
}
// for accumulating averages when refreshing interval markers
class accum { public: accum() : count(0), aepf(0), cpv(0) {} int count; double aepf; double cpv; };
void
PfPvPlot::refreshIntervalMarkers()
{
// zap what we got ...
foreach(QwtPlotMarker *is, intervalMarkers) {
is->detach();
delete is;
}
intervalMarkers.clear();
// do we have a ride with intervals to refresh ?
int count=0;
if (rideItem && rideItem->ride() && rideItem->ride()->dataPoints().count() && (count = rideItem->intervals().count())) {
// accumulating...
QVector<accum> intervalAccumulator(count);
foreach (RideFilePoint *p1, rideItem->ride()->dataPoints()) {
if (p1->cad && p1->watts) {
// calculate the values
double aepf = (p1->watts * 60.0) / (p1->cad * cl_ * 2.0 * PI);
double cpv = (p1->cad * cl_ * 2.0 * PI) / 60.0;
// accumulate values for each interval here ....
for(int i=0; i < count; i++) {
IntervalItem *v = rideItem->intervals()[i];
// in our interval ?
if (p1->secs >= v->start && p1->secs <= v->stop) {
intervalAccumulator[i].aepf += aepf;
intervalAccumulator[i].cpv += cpv;
intervalAccumulator[i].count++;
}
}
}
}
// ok, so now add markers for the average position for each interval
int index = 0;
foreach (accum a, intervalAccumulator) {
QColor color;
color.setHsv(index * 255/count, 255,255);
double cpv = a.cpv/double(a.count);
double aepf = a.aepf/double(a.count);
QwtSymbol *sym = new QwtSymbol;
sym->setStyle(QwtSymbol::Diamond);
sym->setSize(8);
sym->setPen(QPen(GColor(CPLOTMARKER)));
sym->setBrush(QBrush(color));
QwtPlotMarker *p = new QwtPlotMarker();
p->setValue(cpv, aepf);
p->setYAxis(yLeft);
p->setSymbol(sym);
p->attach(this);
intervalMarkers << p;
index++;
}
}
}
void
PfPvPlot::setData(RideItem *_rideItem)
{
if (context->isCompareIntervals) return;
// clear out any interval curves which are presently defined
if (intervalCurves.size()) {
QListIterator<QwtPlotCurve *> i(intervalCurves);
while (i.hasNext()) {
QwtPlotCurve *curve = i.next();
curve->detach();
delete curve;
}
}
intervalCurves.clear();
// clear the hover curve
if (hover) {
hover->detach();
delete hover;
hover = NULL;
}
rideItem = _rideItem;
RideFile *ride = rideItem->ride();
if (ride) {
// quickly erase old data
mainCurvesSetVisible(false);
// due to the discrete power and cadence values returned by the
// power meter, there will very likely be many duplicate values.
// Rather than pass them all to the curve, use a set to strip
// out duplicates.
std::set<std::pair<double, double> > dataSet;
const int num_gearRatio_Plots = 4;
QVector<std::set<std::pair<double, double> > > gearSet(num_gearRatio_Plots);
long tot_cad = 0;
long tot_cad_points = 0;
foreach(const RideFilePoint *p1, ride->dataPoints()) {
if (p1->watts != 0 && p1->cad != 0) {
double aepf = (p1->watts * 60.0) / (p1->cad * cl_ * 2.0 * PI);
double cpv = (p1->cad * cl_ * 2.0 * PI) / 60.0;
if (aepf <= 2500) { // > 2500 newtons is our out of bounds
dataSet.insert(std::make_pair<double, double>(aepf, cpv));
tot_cad += p1->cad;
tot_cad_points++;
// fill the dataSets for gearRatio display
if (p1->gear != 0) {
if (p1->gear > 0.0f && p1->gear <= 1.00f) {
gearSet[0].insert(std::make_pair<double, double>(aepf, cpv));
} else if (p1->gear > 1.00f && p1->gear <= 2.50f ) {
gearSet[1].insert(std::make_pair<double, double>(aepf, cpv));
} else if (p1->gear > 2.50f && p1->gear <= 4.00 ) {
gearSet[2].insert(std::make_pair<double, double>(aepf, cpv));
} else { // > 4.0
gearSet[3].insert(std::make_pair<double, double>(aepf, cpv));
}
}
}
}
}
setCAD(tot_cad_points ? tot_cad / tot_cad_points : 0);
if (tot_cad_points == 0) {
//setTitle(tr("no cadence"));
refreshZoneItems();
mainCurvesSetVisible(false);
} else {
// Now that we have the set of points, transform them into the
// QwtArrays needed to set the curve's data.
QwtArray<double> aepfArray;
QwtArray<double> cpvArray;
std::set<std::pair<double, double> >::const_iterator j(dataSet.begin());
while (j != dataSet.end()) {
const std::pair<double, double>& dataPoint = *j;
aepfArray.push_back(dataPoint.first);
cpvArray.push_back(dataPoint.second);
++j;
}
curve->setSamples(cpvArray, aepfArray);
QwtSymbol *sym = new QwtSymbol;
sym->setStyle(QwtSymbol::Ellipse);
sym->setSize(4);
sym->setPen(QPen(Qt::red));
sym->setBrush(QBrush(Qt::red));
curve->setSymbol(sym);
curve->setStyle(QwtPlotCurve::Dots);
curve->setRenderHint(QwtPlotItem::RenderAntialiased);
// now show the data (zone shading would already be visible)
refreshZoneItems();
// averages for intervals
refreshIntervalMarkers();
// now the curves for gearRatio
if (gearRatioCurves.size()) {
QListIterator<QwtPlotCurve *> g(gearRatioCurves);
while (g.hasNext()) {
QwtPlotCurve *curve = g.next();
curve->detach();
delete curve;
}
}
gearRatioCurves.clear();
// get the detailed data
QVector<QwtArray<double> > aepfArrayGearRatio(num_gearRatio_Plots);
QVector<QwtArray<double> > cpvArrayGearRatio(num_gearRatio_Plots);
for (int i=0;i<num_gearRatio_Plots;i++) {
std::set<std::pair<double, double> >::const_iterator m(gearSet[i].begin());
while (m != gearSet[i].end()) {
const std::pair<double, double>& dataPoint = *m;
aepfArrayGearRatio[i].push_back(dataPoint.first);
cpvArrayGearRatio[i].push_back(dataPoint.second);
++m;
}
}
// create the plots
for (int i=0;i<num_gearRatio_Plots;i++) {
QwtPlotCurve *gearCurve;
gearCurve = new QwtPlotCurve();
QwtSymbol *sym = new QwtSymbol;
sym->setStyle(QwtSymbol::Diamond);
sym->setSize(3);
sym->setBrush(QBrush(Qt::NoBrush));
sym->setPen(QPen(Qt::red));
switch (i) {
case 0: sym->setPen(QPen(Qt::red)); sym->setBrush(QBrush(Qt::red)); break;
case 1: sym->setPen(QPen(Qt::yellow)); sym->setBrush(QBrush(Qt::yellow));break;
case 2: sym->setPen(QPen(Qt::green)); sym->setBrush(QBrush(Qt::green));break;
case 3: sym->setPen(QPen(Qt::blue)); sym->setBrush(QBrush(Qt::blue)); break;
// default means something is wrong, but no err
default: sym->setPen(QPen(Qt::white)); sym->setBrush(QBrush(Qt::white));
}
gearCurve->setSymbol(sym);
gearCurve->setStyle(QwtPlotCurve::Dots);
gearCurve->setRenderHint(QwtPlotItem::RenderAntialiased);
gearCurve->setSamples(cpvArrayGearRatio[i], aepfArrayGearRatio[i]);
gearCurve->attach(this);
gearRatioCurves.append(gearCurve);
}
}
mainCurvesSetVisible(true);
} else {
//setTitle("no data");
refreshZoneItems();
mainCurvesSetVisible(false);
}
replot();
}
void
PfPvPlot::intervalHover(IntervalItem *x)
{
if (!isVisible()) return;
if (context->isCompareIntervals) return;
if (!rideItem) return;
if (!rideItem->ride()) return;
// zap the old one
if (hover) {
hover->detach();
delete hover;
hover = NULL;
}
// if hovering AND no intervals are selected then lets do it
if (x && rideItem->intervalsSelected().count() == 0) {
// collect the data
QVector<double> aepfArray, cpvArray;
foreach(const RideFilePoint *p1, rideItem->ride()->dataPoints()) {
if (p1->secs < x->start || p1->secs > x->stop) continue;
if (p1->watts != 0 && p1->cad != 0) {
double aepf = (p1->watts * 60.0) / (p1->cad * cl_ * 2.0 * PI);
double cpv = (p1->cad * cl_ * 2.0 * PI) / 60.0;
aepfArray << aepf;
cpvArray << cpv;
}
}
// which interval is it or how many ?
int count = 0;
int ours = 0;
foreach(IntervalItem *p, rideItem->intervals()) {
if (p->start == x->start && p->stop == x->stop) ours = count;
count++;
}
// any data ?
if (aepfArray.size()) {
QwtSymbol *sym = new QwtSymbol;
sym->setStyle(QwtSymbol::Ellipse);
sym->setSize(4);
QColor color;
color.setHsv(ours * 255/count, 255,255);
color.setAlpha(128);
sym->setPen(QPen(color));
sym->setBrush(QBrush(color));
hover = new QwtPlotCurve();
hover->setSymbol(sym);
hover->setStyle(QwtPlotCurve::Dots);
hover->setRenderHint(QwtPlotItem::RenderAntialiased);
hover->setSamples(cpvArray, aepfArray);
hover->attach(this);
}
}
replot(); // refresh
}
void
PfPvPlot::showIntervals(RideItem *_rideItem)
{
if (context->isCompareIntervals) return;
if (!rideItem) return;
// clear out any interval curves which are presently defined
if (intervalCurves.size()) {
QListIterator<QwtPlotCurve *> i(intervalCurves);
while (i.hasNext()) {
QwtPlotCurve *curve = i.next();
curve->detach();
//delete curve;
}
}
intervalCurves.clear();
rideItem = _rideItem;
RideFile *ride = rideItem->ride();
if (ride) {
int num_intervals=intervalCount();
if (mergeIntervals()) num_intervals = 1;
if (frameIntervals() || num_intervals==0) mainCurvesSetVisible(true);
if (frameIntervals()==false && num_intervals) mainCurvesSetVisible(false);
QVector<std::set<std::pair<double, double> > > dataSetInterval(num_intervals);
long tot_cad = 0;
long tot_cad_points = 0;
foreach(const RideFilePoint *p1, ride->dataPoints()) {
if (p1->watts != 0 && p1->cad != 0) {
double aepf = (p1->watts * 60.0) / (p1->cad * cl_ * 2.0 * PI);
double cpv = (p1->cad * cl_ * 2.0 * PI) / 60.0;
for (int high=-1, t=0; t<rideItem->intervals().count(); t++) {
IntervalItem *current = dynamic_cast<IntervalItem *>(rideItem->intervals().at(t));
if ((current != NULL) && current->selected) {
++high;
if (p1->secs+ride->recIntSecs() > current->start && p1->secs< current->stop) {
if (mergeIntervals())
dataSetInterval[0].insert(std::make_pair<double, double>(aepf, cpv));
else
dataSetInterval[high].insert(std::make_pair<double, double>(aepf, cpv));
}
}
}
tot_cad += p1->cad;
tot_cad_points++;
}
}
if (tot_cad_points > 0) {
// Now that we have the set of points, transform them into the
// QwtArrays needed to set the curve's data.
QVector<QwtArray<double> > aepfArrayInterval(num_intervals);
QVector<QwtArray<double> > cpvArrayInterval(num_intervals);
for (int i=0;i<num_intervals;i++) {
std::set<std::pair<double, double> >::const_iterator l(dataSetInterval[i].begin());
while (l != dataSetInterval[i].end()) {
const std::pair<double, double>& dataPoint = *l;
aepfArrayInterval[i].push_back(dataPoint.first);
cpvArrayInterval[i].push_back(dataPoint.second);
++l;
}
}
// ensure same colors are used for each interval selected
int num_intervals_defined=0;
QVector<int> intervalmap;
num_intervals_defined = rideItem->intervals().count();
for (int g=0; g<rideItem->intervals().count(); g++) {
IntervalItem *curr = dynamic_cast<IntervalItem *>(rideItem->intervals().at(g));
if (curr->selected) intervalmap.append(g);
}
// honor display sequencing
QMap<int, int> intervalOrder;
int count=0;
if (mergeIntervals()) intervalOrder.insert(1,0);
else {
for (int i=0; i<rideItem->intervals().count(); i++) {
IntervalItem *current = dynamic_cast<IntervalItem *>(rideItem->intervals().at(i));
if (current != NULL && current->selected == true) {
intervalOrder.insert(current->displaySequence, count++);
}
}
}
QMapIterator<int, int> order(intervalOrder);
while (order.hasNext()) {
order.next();
int z = order.value();
QwtPlotCurve *curve;
curve = new QwtPlotCurve();
QColor intervalColor;
if (mergeIntervals())
intervalColor = Qt::red;
else
intervalColor.setHsv((intervalmap.count() > 0 ? intervalmap.at(z) : 1) * 255/num_intervals_defined, 255,255);
QwtSymbol *sym = new QwtSymbol;
sym->setStyle(QwtSymbol::Ellipse);
sym->setSize(4);
sym->setBrush(QBrush(Qt::NoBrush));
QPen pen;
pen.setColor(intervalColor);
sym->setPen(pen);
intervalColor.setAlpha(128);
sym->setBrush(QBrush(intervalColor));
curve->setSymbol(sym);
curve->setStyle(QwtPlotCurve::Dots);
curve->setRenderHint(QwtPlotItem::RenderAntialiased);
curve->setSamples(cpvArrayInterval[z],aepfArrayInterval[z]);
curve->attach(this);
intervalCurves.append(curve);
}
}
}
refreshIntervalMarkers();
replot();
}
void
PfPvPlot::recalcCompare()
{
// do all the calculations for compare mode
// we do as a separate method to 'isolate' compare mode
// updates to ensure we don't break all the charts !!
maxAEPF = 600;
maxCPV = 3;
foreach(CompareInterval ci, context->compareIntervals) {
if (!ci.isChecked()) continue;
// calculate maximums
foreach(const RideFilePoint *p1, ci.data->dataPoints()) {
if (p1->watts != 0 && p1->cad != 0) {
double aepf = (p1->watts * 60.0) / (p1->cad * cl_ * 2.0 * PI);
double cpv = (p1->cad * cl_ * 2.0 * PI) / 60.0;
if (aepf < 255 && aepf > maxAEPF) maxAEPF = aepf;
if (cpv > maxCPV) maxCPV = cpv;
}
}
}
if (maxAEPF > 600) {
setAxisScale(yLeft, 0, (maxAEPF < 2500) ? (maxAEPF * 1.1) : 2500); // a bit of headroom
tiqMarker[0]->setYValue(maxAEPF);
tiqMarker[1]->setYValue(maxAEPF);
} else {
maxAEPF = 600; // for background shading and CP curve
setAxisScale(yLeft, 0, 600);
tiqMarker[0]->setYValue(580);
tiqMarker[1]->setYValue(580);
}
if (maxCPV > 3) {
// round *UP* to next integer for axis to fill nicely
maxCPV = round(maxCPV + 0.5);
setAxisScale(xBottom, 0, maxCPV);
tiqMarker[0]->setXValue(maxCPV - 0.5);
tiqMarker[3]->setXValue(maxCPV - 0.5);
} else {
maxCPV = 3; // for background shading and CP curve
setAxisScale(xBottom, 0, 3);
tiqMarker[0]->setXValue(2.9);
tiqMarker[3]->setXValue(2.9);
}
// initialize x values used for contours
contour_xvalues.clear();
for (double x = 0; x <= maxCPV; x += x / 20 + 0.02) contour_xvalues.append(x);
contour_xvalues.append(maxCPV);
double cpv = (cad_ * cl_ * 2.0 * PI) / 60.0;
mX->setXValue(cpv);
double aepf = (cp_ * 60.0) / (cad_ * cl_ * 2.0 * PI);
mY->setYValue(aepf);
// reset to zero in case there are none
timeInQuadrant[0]=
timeInQuadrant[1]=
timeInQuadrant[2]=
timeInQuadrant[3]= 0.0;
// watch out for null rides
foreach(CompareInterval ci, context->compareIntervals) {
if (!ci.isChecked()) continue;
foreach(const RideFilePoint *p1, ci.data->dataPoints()) {
if (p1->watts != 0 && p1->cad != 0) {
double aepf_ = (p1->watts * 60.0) / (p1->cad * cl_ * 2.0 * PI);
double cpv_ = (p1->cad * cl_ * 2.0 * PI) / 60.0;
// classic QA quadrants I II III and IV
if (aepf_ > aepf && cpv_ > cpv) timeInQuadrant[0] += ci.data->recIntSecs();
else if (aepf_ > aepf && cpv_ <= cpv) timeInQuadrant[1] += ci.data->recIntSecs();
else if (aepf_ <= aepf && cpv_ <= cpv) timeInQuadrant[2] += ci.data->recIntSecs();
else if (aepf_ <= aepf && cpv_ > cpv) timeInQuadrant[3] += ci.data->recIntSecs();
}
}
}
double totaltime = timeInQuadrant[0] + timeInQuadrant[1] + timeInQuadrant[2] + timeInQuadrant[3] ;
if (totaltime) {
QwtText t0(QString("%1%").arg(timeInQuadrant[0] / totaltime * 100, 0, 'f', 1),QwtText::PlainText);
t0.setColor(GColor(CPLOTMARKER));
tiqMarker[0]->setLabel(t0);
QwtText t1(QString("%1%").arg(timeInQuadrant[1] / totaltime * 100, 0, 'f', 1),QwtText::PlainText);
t1.setColor(GColor(CPLOTMARKER));
tiqMarker[1]->setLabel(t1);
QwtText t2(QString("%1%").arg(timeInQuadrant[2] / totaltime * 100, 0, 'f', 1),QwtText::PlainText);
t2.setColor(GColor(CPLOTMARKER));
tiqMarker[2]->setLabel(t2);
QwtText t3(QString("%1%").arg(timeInQuadrant[3] / totaltime * 100, 0, 'f', 1),QwtText::PlainText);
t3.setColor(GColor(CPLOTMARKER));
tiqMarker[3]->setLabel(t3);
} else {
tiqMarker[0]->setLabel(QwtText("",QwtText::PlainText));
tiqMarker[1]->setLabel(QwtText("",QwtText::PlainText));
tiqMarker[2]->setLabel(QwtText("",QwtText::PlainText));
tiqMarker[3]->setLabel(QwtText("",QwtText::PlainText));
}
}
void
PfPvPlot::recalc()
{
// we're for a ride only..
if (context->isCompareIntervals) {
recalcCompare();
return;
}
// adjust the scales if we have some big values
// this can happen with track sprinters who put
// out big numbers for power and cadence since
// hey have a fixed gear and big quads!
maxAEPF = 600;
maxCPV = 3;
RideFile *ride;
if (rideItem && (ride=rideItem->ride())) {
// calculate maximums
foreach(const RideFilePoint *p1, ride->dataPoints()) {
if (p1->watts != 0 && p1->cad != 0) {
double aepf = (p1->watts * 60.0) / (p1->cad * cl_ * 2.0 * PI);
double cpv = (p1->cad * cl_ * 2.0 * PI) / 60.0;
if (aepf < 255 && aepf > maxAEPF) maxAEPF = aepf;
if (cpv > maxCPV) maxCPV = cpv;
}
}
}
if (maxAEPF > 600) {
setAxisScale(yLeft, 0, (maxAEPF < 2500) ? (maxAEPF * 1.1) : 2500); // a bit of headroom
tiqMarker[0]->setYValue(maxAEPF);
tiqMarker[1]->setYValue(maxAEPF);
} else {
maxAEPF = 600; // for background shading and CP curve
setAxisScale(yLeft, 0, 600);
tiqMarker[0]->setYValue(580);
tiqMarker[1]->setYValue(580);
}
if (maxCPV > 3) {
// round *UP* to next integer for axis to fill nicely
maxCPV = round(maxCPV + 0.5);
setAxisScale(xBottom, 0, maxCPV);
tiqMarker[0]->setXValue(maxCPV - 0.5);
tiqMarker[3]->setXValue(maxCPV - 0.5);
} else {
maxCPV = 3; // for background shading and CP curve
setAxisScale(xBottom, 0, 3);
tiqMarker[0]->setXValue(2.9);
tiqMarker[3]->setXValue(2.9);
}
// initialize x values used for contours
contour_xvalues.clear();
for (double x = 0; x <= maxCPV; x += x / 20 + 0.02) contour_xvalues.append(x);
contour_xvalues.append(maxCPV);
double cpv = (cad_ * cl_ * 2.0 * PI) / 60.0;
mX->setXValue(cpv);
double aepf = (cp_ * 60.0) / (cad_ * cl_ * 2.0 * PI);
mY->setYValue(aepf);
// watch out for null rides
if (rideItem && (ride=rideItem->ride())) {
timeInQuadrant[0]=
timeInQuadrant[1]=
timeInQuadrant[2]=
timeInQuadrant[3]= 0.0;
foreach(const RideFilePoint *p1, ride->dataPoints()) {
if (p1->watts != 0 && p1->cad != 0) {
double aepf_ = (p1->watts * 60.0) / (p1->cad * cl_ * 2.0 * PI);
double cpv_ = (p1->cad * cl_ * 2.0 * PI) / 60.0;
// classic QA quadrants I II III and IV
if (aepf_ > aepf && cpv_ > cpv) timeInQuadrant[0] += ride->recIntSecs();
else if (aepf_ > aepf && cpv_ <= cpv) timeInQuadrant[1] += ride->recIntSecs();
else if (aepf_ <= aepf && cpv_ <= cpv) timeInQuadrant[2] += ride->recIntSecs();
else if (aepf_ <= aepf && cpv_ > cpv) timeInQuadrant[3] += ride->recIntSecs();
}
}
double totaltime = timeInQuadrant[0] + timeInQuadrant[1] + timeInQuadrant[2] + timeInQuadrant[3] ;
if (totaltime) {
QwtText t0(QString("%1%").arg(timeInQuadrant[0] / totaltime * 100, 0, 'f', 1),QwtText::PlainText);
t0.setColor(GColor(CPLOTMARKER));
tiqMarker[0]->setLabel(t0);
QwtText t1(QString("%1%").arg(timeInQuadrant[1] / totaltime * 100, 0, 'f', 1),QwtText::PlainText);
t1.setColor(GColor(CPLOTMARKER));
tiqMarker[1]->setLabel(t1);
QwtText t2(QString("%1%").arg(timeInQuadrant[2] / totaltime * 100, 0, 'f', 1),QwtText::PlainText);
t2.setColor(GColor(CPLOTMARKER));
tiqMarker[2]->setLabel(t2);
QwtText t3(QString("%1%").arg(timeInQuadrant[3] / totaltime * 100, 0, 'f', 1),QwtText::PlainText);
t3.setColor(GColor(CPLOTMARKER));
tiqMarker[3]->setLabel(t3);
} else {
tiqMarker[0]->setLabel(QwtText("",QwtText::PlainText));
tiqMarker[1]->setLabel(QwtText("",QwtText::PlainText));
tiqMarker[2]->setLabel(QwtText("",QwtText::PlainText));
tiqMarker[3]->setLabel(QwtText("",QwtText::PlainText));
}
} else {
tiqMarker[0]->setLabel(QwtText("",QwtText::PlainText));
tiqMarker[1]->setLabel(QwtText("",QwtText::PlainText));
tiqMarker[2]->setLabel(QwtText("",QwtText::PlainText));
tiqMarker[3]->setLabel(QwtText("",QwtText::PlainText));
}
QwtArray<double> yvalues(contour_xvalues.size());
if (cp_) {
// reinitialise array
for (int i = 0; i < contour_xvalues.size(); i ++)
yvalues[i] = (cpv < cp_ / 1e6) ? 1e6 : cp_ / contour_xvalues[i];
// generate curve at a given power
cpCurve->setSamples(contour_xvalues, yvalues);
} else {
// an empty curve if no power (or zero power) is specified
QwtArray<double> data;
cpCurve->setSamples(data,data);
}
}
int
PfPvPlot::getCP()
{
return cp_;
}
void
PfPvPlot::setCP(int cp)
{
cp_ = cp;
recalc();
emit changedCP( QString("%1").arg(cp) );
}
int
PfPvPlot::getCAD()
{
return cad_;
}
void
PfPvPlot::setCAD(int cadence)
{
cad_ = cadence;
recalc();
emit changedCAD( QString("%1").arg(cadence) );
}
double
PfPvPlot::getCL()
{
return cl_;
}
void
PfPvPlot::setCL(double cranklen)
{
cl_ = cranklen;
recalc();
emit changedCL( QString("%1").arg(cranklen) );
}
// process checkbox for zone shading
void
PfPvPlot::setShadeZones(bool value)
{
shade_zones = value;
// if there are defined zones and labels, set their visibility
for (int i = 0; i < zoneCurves.size(); i ++)
zoneCurves[i]->setVisible(shade_zones);
for (int i = 0; i < zoneLabels.size(); i ++)
zoneLabels[i]->setVisible(shade_zones);
//replot();
}
void
PfPvPlot::setMergeIntervals(bool value)
{
merge_intervals = value;
showIntervals(rideItem);
}
void
PfPvPlot::setFrameIntervals(bool value)
{
frame_intervals = value;
showIntervals(rideItem);
}
void
PfPvPlot::setGearRatioDisplay(bool value)
{
gear_ratio_display = value;
if (context->isCompareIntervals) return;
mainCurvesSetVisible(true);
replot();
}
void
PfPvPlot::showCompareIntervals()
{
// Remove interval curve
if (intervalCurves.size()) {
QListIterator<QwtPlotCurve *> i(intervalCurves);
while (i.hasNext()) {
QwtPlotCurve *curve = i.next();
curve->detach();
//delete curve;
}
}
intervalCurves.clear();
// quickly erase old data
mainCurvesSetVisible(false);
int num_intervals = context->compareIntervals.count();
// If not compare mode or no intervals
if (context->compareIntervals.count() == 0) return;
recalcCompare();
QVector<std::set<std::pair<double, double> > > dataSetInterval(num_intervals);
long tot_cad = 0;
long tot_cad_points = 0;
// prepare aggregates
for (int high=-1, i = 0; i < context->compareIntervals.size(); ++i) {
CompareInterval interval = context->compareIntervals.at(i);
if (interval.isChecked()) {
++high;
foreach(const RideFilePoint *p1, interval.data->dataPoints()) {
if (p1->watts != 0 && p1->cad != 0) {
double aepf = (p1->watts * 60.0) / (p1->cad * cl_ * 2.0 * PI);
double cpv = (p1->cad * cl_ * 2.0 * PI) / 60.0;
if (mergeIntervals())
dataSetInterval[0].insert(std::make_pair<double, double>(aepf, cpv));
else
dataSetInterval[high].insert(std::make_pair<double, double>(aepf, cpv));
tot_cad += p1->cad;
tot_cad_points++;
}
}
}
}
if (tot_cad_points > 0) {
// Now that we have the set of points, transform them into the
// QwtArrays needed to set the curve's data.
QVector<QwtArray<double> > aepfArrayInterval(num_intervals);
QVector<QwtArray<double> > cpvArrayInterval(num_intervals);
for (int i=0;i<num_intervals;i++) {
std::set<std::pair<double, double> >::const_iterator l(dataSetInterval[i].begin());
while (l != dataSetInterval[i].end()) {
const std::pair<double, double>& dataPoint = *l;
aepfArrayInterval[i].push_back(dataPoint.first);
cpvArrayInterval[i].push_back(dataPoint.second);
++l;
}
}
// ensure same colors are used for each interval selected
QMap<int, CompareInterval> intervalmap;
int count=0;
if (num_intervals > 0) {
for (int g=0; g<num_intervals; g++) {
CompareInterval interval = context->compareIntervals.at(g);
if (interval.checked) intervalmap.insert(count++, interval);
}
}
QMapIterator<int, CompareInterval> order(intervalmap);
while (order.hasNext()) {
order.next();
CompareInterval interval = order.value();
QwtPlotCurve *_curve;
_curve = new QwtPlotCurve();
QColor intervalColor;
if (mergeIntervals())
intervalColor = Qt::red;
else
intervalColor = interval.color;
QwtSymbol *sym = new QwtSymbol;
sym->setStyle(QwtSymbol::Ellipse);
sym->setSize(4);
sym->setBrush(QBrush(Qt::NoBrush));
QPen pen;
pen.setColor(intervalColor);
sym->setPen(pen);
intervalColor.setAlpha(128);
sym->setBrush(QBrush(intervalColor));
_curve->setSymbol(sym);
_curve->setStyle(QwtPlotCurve::Dots);
_curve->setRenderHint(QwtPlotItem::RenderAntialiased);
_curve->setSamples(cpvArrayInterval[order.key()],aepfArrayInterval[order.key()]);
_curve->attach(this);
intervalCurves.append(_curve);
}
}
refreshZoneItems();
replot();
}
void
PfPvPlot::mainCurvesSetVisible(bool visible) {
if (gearRatioCurves.size()) {
QListIterator<QwtPlotCurve *> i(gearRatioCurves);
while (i.hasNext()) {
QwtPlotCurve *curve = i.next();
curve->setVisible(visible ? gear_ratio_display : false);
}
}
curve->setVisible(visible ? !gear_ratio_display : false);
}