mirror of
https://github.com/GoldenCheetah/GoldenCheetah.git
synced 2026-02-13 16:18:42 +00:00
.. allows constrained fits .. this is a GPL lib that is included into the source tree to avoid adding another painful deendency. .. for details of the lib please see: http://users.ics.forth.gr/~lourakis/levmar/
507 lines
20 KiB
C
507 lines
20 KiB
C
/////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Levenberg - Marquardt non-linear minimization algorithm
|
|
// Copyright (C) 2009 Manolis Lourakis (lourakis at ics forth gr)
|
|
// Institute of Computer Science, Foundation for Research & Technology - Hellas
|
|
// Heraklion, Crete, Greece.
|
|
//
|
|
// This program is free software; you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation; either version 2 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// This program is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
//
|
|
/////////////////////////////////////////////////////////////////////////////////
|
|
|
|
#ifndef LM_REAL // not included by lmbleic.c
|
|
#error This file should not be compiled directly!
|
|
#endif
|
|
|
|
|
|
/* precision-specific definitions */
|
|
#define LMBLEIC_DATA LM_ADD_PREFIX(lmbleic_data)
|
|
#define LMBLEIC_ELIM LM_ADD_PREFIX(lmbleic_elim)
|
|
#define LMBLEIC_FUNC LM_ADD_PREFIX(lmbleic_func)
|
|
#define LMBLEIC_JACF LM_ADD_PREFIX(lmbleic_jacf)
|
|
#define LEVMAR_BLEIC_DER LM_ADD_PREFIX(levmar_bleic_der)
|
|
#define LEVMAR_BLEIC_DIF LM_ADD_PREFIX(levmar_bleic_dif)
|
|
#define LEVMAR_BLIC_DER LM_ADD_PREFIX(levmar_blic_der)
|
|
#define LEVMAR_BLIC_DIF LM_ADD_PREFIX(levmar_blic_dif)
|
|
#define LEVMAR_LEIC_DER LM_ADD_PREFIX(levmar_leic_der)
|
|
#define LEVMAR_LEIC_DIF LM_ADD_PREFIX(levmar_leic_dif)
|
|
#define LEVMAR_LIC_DER LM_ADD_PREFIX(levmar_lic_der)
|
|
#define LEVMAR_LIC_DIF LM_ADD_PREFIX(levmar_lic_dif)
|
|
#define LEVMAR_BLEC_DER LM_ADD_PREFIX(levmar_blec_der)
|
|
#define LEVMAR_BLEC_DIF LM_ADD_PREFIX(levmar_blec_dif)
|
|
#define LEVMAR_TRANS_MAT_MAT_MULT LM_ADD_PREFIX(levmar_trans_mat_mat_mult)
|
|
#define LEVMAR_COVAR LM_ADD_PREFIX(levmar_covar)
|
|
#define LEVMAR_FDIF_FORW_JAC_APPROX LM_ADD_PREFIX(levmar_fdif_forw_jac_approx)
|
|
|
|
struct LMBLEIC_DATA{
|
|
LM_REAL *jac;
|
|
int nineqcnstr; // #inequality constraints
|
|
void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata);
|
|
void (*jacf)(LM_REAL *p, LM_REAL *jac, int m, int n, void *adata);
|
|
void *adata;
|
|
};
|
|
|
|
|
|
/* wrapper ensuring that the user-supplied function is called with the right number of variables (i.e. m) */
|
|
static void LMBLEIC_FUNC(LM_REAL *pext, LM_REAL *hx, int mm, int n, void *adata)
|
|
{
|
|
struct LMBLEIC_DATA *data=(struct LMBLEIC_DATA *)adata;
|
|
int m;
|
|
|
|
m=mm-data->nineqcnstr;
|
|
(*(data->func))(pext, hx, m, n, data->adata);
|
|
}
|
|
|
|
|
|
/* wrapper for computing the Jacobian at pext. The Jacobian is nxmm */
|
|
static void LMBLEIC_JACF(LM_REAL *pext, LM_REAL *jacext, int mm, int n, void *adata)
|
|
{
|
|
struct LMBLEIC_DATA *data=(struct LMBLEIC_DATA *)adata;
|
|
int m;
|
|
register int i, j;
|
|
LM_REAL *jac, *jacim, *jacextimm;
|
|
|
|
m=mm-data->nineqcnstr;
|
|
jac=data->jac;
|
|
|
|
(*(data->jacf))(pext, jac, m, n, data->adata);
|
|
|
|
for(i=0; i<n; ++i){
|
|
jacextimm=jacext+i*mm;
|
|
jacim=jac+i*m;
|
|
for(j=0; j<m; ++j)
|
|
jacextimm[j]=jacim[j]; //jacext[i*mm+j]=jac[i*m+j];
|
|
|
|
for(j=m; j<mm; ++j)
|
|
jacextimm[j]=0.0; //jacext[i*mm+j]=0.0;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* This function is similar to LEVMAR_DER except that the minimization is
|
|
* performed subject to the box constraints lb[i]<=p[i]<=ub[i], the linear
|
|
* equation constraints A*p=b, A being k1xm, b k1x1, and the linear inequality
|
|
* constraints C*p>=d, C being k2xm, d k2x1.
|
|
*
|
|
* The inequalities are converted to equations by introducing surplus variables,
|
|
* i.e. c^T*p >= d becomes c^T*p - y = d, with y>=0. To transform all inequalities
|
|
* to equations, a total of k2 surplus variables are introduced; a problem with only
|
|
* box and linear constraints results then and is solved with LEVMAR_BLEC_DER()
|
|
* Note that opposite direction inequalities should be converted to the desired
|
|
* direction by negating, i.e. c^T*p <= d becomes -c^T*p >= -d
|
|
*
|
|
* This function requires an analytic Jacobian. In case the latter is unavailable,
|
|
* use LEVMAR_BLEIC_DIF() bellow
|
|
*
|
|
*/
|
|
int LEVMAR_BLEIC_DER(
|
|
void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata), /* functional relation describing measurements. A p \in R^m yields a \hat{x} \in R^n */
|
|
void (*jacf)(LM_REAL *p, LM_REAL *j, int m, int n, void *adata), /* function to evaluate the Jacobian \part x / \part p */
|
|
LM_REAL *p, /* I/O: initial parameter estimates. On output has the estimated solution */
|
|
LM_REAL *x, /* I: measurement vector. NULL implies a zero vector */
|
|
int m, /* I: parameter vector dimension (i.e. #unknowns) */
|
|
int n, /* I: measurement vector dimension */
|
|
LM_REAL *lb, /* I: vector of lower bounds. If NULL, no lower bounds apply */
|
|
LM_REAL *ub, /* I: vector of upper bounds. If NULL, no upper bounds apply */
|
|
LM_REAL *A, /* I: equality constraints matrix, k1xm. If NULL, no linear equation constraints apply */
|
|
LM_REAL *b, /* I: right hand constraints vector, k1x1 */
|
|
int k1, /* I: number of constraints (i.e. A's #rows) */
|
|
LM_REAL *C, /* I: inequality constraints matrix, k2xm */
|
|
LM_REAL *d, /* I: right hand constraints vector, k2x1 */
|
|
int k2, /* I: number of inequality constraints (i.e. C's #rows) */
|
|
int itmax, /* I: maximum number of iterations */
|
|
LM_REAL opts[4], /* I: minim. options [\mu, \epsilon1, \epsilon2, \epsilon3]. Respectively the scale factor for initial \mu,
|
|
* stopping thresholds for ||J^T e||_inf, ||Dp||_2 and ||e||_2. Set to NULL for defaults to be used
|
|
*/
|
|
LM_REAL info[LM_INFO_SZ],
|
|
/* O: information regarding the minimization. Set to NULL if don't care
|
|
* info[0]= ||e||_2 at initial p.
|
|
* info[1-4]=[ ||e||_2, ||J^T e||_inf, ||Dp||_2, mu/max[J^T J]_ii ], all computed at estimated p.
|
|
* info[5]= # iterations,
|
|
* info[6]=reason for terminating: 1 - stopped by small gradient J^T e
|
|
* 2 - stopped by small Dp
|
|
* 3 - stopped by itmax
|
|
* 4 - singular matrix. Restart from current p with increased mu
|
|
* 5 - no further error reduction is possible. Restart with increased mu
|
|
* 6 - stopped by small ||e||_2
|
|
* 7 - stopped by invalid (i.e. NaN or Inf) "func" values. This is a user error
|
|
* info[7]= # function evaluations
|
|
* info[8]= # Jacobian evaluations
|
|
* info[9]= # linear systems solved, i.e. # attempts for reducing error
|
|
*/
|
|
LM_REAL *work, /* working memory at least LM_BLEIC_DER_WORKSZ() reals large, allocated if NULL */
|
|
LM_REAL *covar, /* O: Covariance matrix corresponding to LS solution; mxm. Set to NULL if not needed. */
|
|
void *adata) /* pointer to possibly additional data, passed uninterpreted to func & jacf.
|
|
* Set to NULL if not needed
|
|
*/
|
|
{
|
|
struct LMBLEIC_DATA data;
|
|
LM_REAL *ptr, *pext, *Aext, *bext, *covext; /* corresponding to p, A, b, covar for the full set of variables;
|
|
pext=[p, surplus], pext is mm, Aext is (k1+k2)xmm, bext (k1+k2), covext is mmxmm
|
|
*/
|
|
LM_REAL *lbext, *ubext; // corresponding to lb, ub for the full set of variables
|
|
int mm, ret, k12;
|
|
register int i, j, ii;
|
|
register LM_REAL tmp;
|
|
LM_REAL locinfo[LM_INFO_SZ];
|
|
|
|
if(!jacf){
|
|
fprintf(stderr, RCAT("No function specified for computing the Jacobian in ", LEVMAR_BLEIC_DER)
|
|
RCAT("().\nIf no such function is available, use ", LEVMAR_BLEIC_DIF) RCAT("() rather than ", LEVMAR_BLEIC_DER) "()\n");
|
|
return LM_ERROR;
|
|
}
|
|
|
|
if(!C || !d){
|
|
fprintf(stderr, RCAT(LCAT(LEVMAR_BLEIC_DER, "(): missing inequality constraints, use "), LEVMAR_BLEC_DER) "() in this case!\n");
|
|
return LM_ERROR;
|
|
}
|
|
|
|
if(!A || !b) k1=0; // sanity check
|
|
|
|
mm=m+k2;
|
|
|
|
if(n<m-k1){
|
|
fprintf(stderr, LCAT(LEVMAR_BLEIC_DER, "(): cannot solve a problem with fewer measurements + equality constraints [%d + %d] than unknowns [%d]\n"), n, k1, m);
|
|
return LM_ERROR;
|
|
}
|
|
|
|
k12=k1+k2;
|
|
ptr=(LM_REAL *)malloc((3*mm + k12*mm + k12 + n*m + (covar? mm*mm : 0))*sizeof(LM_REAL));
|
|
if(!ptr){
|
|
fprintf(stderr, LCAT(LEVMAR_BLEIC_DER, "(): memory allocation request failed\n"));
|
|
return LM_ERROR;
|
|
}
|
|
pext=ptr;
|
|
lbext=pext+mm;
|
|
ubext=lbext+mm;
|
|
Aext=ubext+mm;
|
|
bext=Aext+k12*mm;
|
|
data.jac=bext+k12;
|
|
covext=covar? data.jac+n*m : NULL;
|
|
data.nineqcnstr=k2;
|
|
data.func=func;
|
|
data.jacf=jacf;
|
|
data.adata=adata;
|
|
|
|
/* compute y s.t. C*p - y=d, i.e. y=C*p-d.
|
|
* y is stored in the last k2 elements of pext
|
|
*/
|
|
for(i=0; i<k2; ++i){
|
|
for(j=0, tmp=0.0; j<m; ++j)
|
|
tmp+=C[i*m+j]*p[j];
|
|
pext[j=i+m]=tmp-d[i];
|
|
|
|
/* surplus variables must be >=0 */
|
|
lbext[j]=0.0;
|
|
ubext[j]=LM_REAL_MAX;
|
|
}
|
|
/* set the first m elements of pext equal to p */
|
|
for(i=0; i<m; ++i){
|
|
pext[i]=p[i];
|
|
lbext[i]=lb? lb[i] : LM_REAL_MIN;
|
|
ubext[i]=ub? ub[i] : LM_REAL_MAX;
|
|
}
|
|
|
|
/* setup the constraints matrix */
|
|
/* original linear equation constraints */
|
|
for(i=0; i<k1; ++i){
|
|
for(j=0; j<m; ++j)
|
|
Aext[i*mm+j]=A[i*m+j];
|
|
|
|
for(j=m; j<mm; ++j)
|
|
Aext[i*mm+j]=0.0;
|
|
|
|
bext[i]=b[i];
|
|
}
|
|
/* linear equation constraints resulting from surplus variables */
|
|
for(i=0, ii=k1; i<k2; ++i, ++ii){
|
|
for(j=0; j<m; ++j)
|
|
Aext[ii*mm+j]=C[i*m+j];
|
|
|
|
for(j=m; j<mm; ++j)
|
|
Aext[ii*mm+j]=0.0;
|
|
|
|
Aext[ii*mm+m+i]=-1.0;
|
|
|
|
bext[ii]=d[i];
|
|
}
|
|
|
|
if(!info) info=locinfo; /* make sure that LEVMAR_BLEC_DER() is called with non-null info */
|
|
/* note that the default weights for the penalty terms are being used below */
|
|
ret=LEVMAR_BLEC_DER(LMBLEIC_FUNC, LMBLEIC_JACF, pext, x, mm, n, lbext, ubext, Aext, bext, k12, NULL, itmax, opts, info, work, covext, (void *)&data);
|
|
|
|
/* copy back the minimizer */
|
|
for(i=0; i<m; ++i)
|
|
p[i]=pext[i];
|
|
|
|
#if 0
|
|
printf("Surplus variables for the minimizer:\n");
|
|
for(i=m; i<mm; ++i)
|
|
printf("%g ", pext[i]);
|
|
printf("\n\n");
|
|
#endif
|
|
|
|
if(covar){
|
|
for(i=0; i<m; ++i){
|
|
for(j=0; j<m; ++j)
|
|
covar[i*m+j]=covext[i*mm+j];
|
|
}
|
|
}
|
|
|
|
free(ptr);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Similar to the LEVMAR_BLEIC_DER() function above, except that the Jacobian is approximated
|
|
* with the aid of finite differences (forward or central, see the comment for the opts argument)
|
|
*/
|
|
int LEVMAR_BLEIC_DIF(
|
|
void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata), /* functional relation describing measurements. A p \in R^m yields a \hat{x} \in R^n */
|
|
LM_REAL *p, /* I/O: initial parameter estimates. On output has the estimated solution */
|
|
LM_REAL *x, /* I: measurement vector. NULL implies a zero vector */
|
|
int m, /* I: parameter vector dimension (i.e. #unknowns) */
|
|
int n, /* I: measurement vector dimension */
|
|
LM_REAL *lb, /* I: vector of lower bounds. If NULL, no lower bounds apply */
|
|
LM_REAL *ub, /* I: vector of upper bounds. If NULL, no upper bounds apply */
|
|
LM_REAL *A, /* I: equality constraints matrix, k1xm. If NULL, no linear equation constraints apply */
|
|
LM_REAL *b, /* I: right hand constraints vector, k1x1 */
|
|
int k1, /* I: number of constraints (i.e. A's #rows) */
|
|
LM_REAL *C, /* I: inequality constraints matrix, k2xm */
|
|
LM_REAL *d, /* I: right hand constraints vector, k2x1 */
|
|
int k2, /* I: number of inequality constraints (i.e. C's #rows) */
|
|
int itmax, /* I: maximum number of iterations */
|
|
LM_REAL opts[5], /* I: opts[0-3] = minim. options [\mu, \epsilon1, \epsilon2, \epsilon3, \delta]. Respectively the
|
|
* scale factor for initial \mu, stopping thresholds for ||J^T e||_inf, ||Dp||_2 and ||e||_2 and
|
|
* the step used in difference approximation to the Jacobian. Set to NULL for defaults to be used.
|
|
* If \delta<0, the Jacobian is approximated with central differences which are more accurate
|
|
* (but slower!) compared to the forward differences employed by default.
|
|
*/
|
|
LM_REAL info[LM_INFO_SZ],
|
|
/* O: information regarding the minimization. Set to NULL if don't care
|
|
* info[0]= ||e||_2 at initial p.
|
|
* info[1-4]=[ ||e||_2, ||J^T e||_inf, ||Dp||_2, mu/max[J^T J]_ii ], all computed at estimated p.
|
|
* info[5]= # iterations,
|
|
* info[6]=reason for terminating: 1 - stopped by small gradient J^T e
|
|
* 2 - stopped by small Dp
|
|
* 3 - stopped by itmax
|
|
* 4 - singular matrix. Restart from current p with increased mu
|
|
* 5 - no further error reduction is possible. Restart with increased mu
|
|
* 6 - stopped by small ||e||_2
|
|
* 7 - stopped by invalid (i.e. NaN or Inf) "func" values. This is a user error
|
|
* info[7]= # function evaluations
|
|
* info[8]= # Jacobian evaluations
|
|
* info[9]= # linear systems solved, i.e. # attempts for reducing error
|
|
*/
|
|
LM_REAL *work, /* working memory at least LM_BLEIC_DIF_WORKSZ() reals large, allocated if NULL */
|
|
LM_REAL *covar, /* O: Covariance matrix corresponding to LS solution; mxm. Set to NULL if not needed. */
|
|
void *adata) /* pointer to possibly additional data, passed uninterpreted to func.
|
|
* Set to NULL if not needed
|
|
*/
|
|
{
|
|
struct LMBLEIC_DATA data;
|
|
LM_REAL *ptr, *pext, *Aext, *bext, *covext; /* corresponding to p, A, b, covar for the full set of variables;
|
|
pext=[p, surplus], pext is mm, Aext is (k1+k2)xmm, bext (k1+k2), covext is mmxmm
|
|
*/
|
|
LM_REAL *lbext, *ubext; // corresponding to lb, ub for the full set of variables
|
|
int mm, ret, k12;
|
|
register int i, j, ii;
|
|
register LM_REAL tmp;
|
|
LM_REAL locinfo[LM_INFO_SZ];
|
|
|
|
if(!C || !d){
|
|
fprintf(stderr, RCAT(LCAT(LEVMAR_BLEIC_DIF, "(): missing inequality constraints, use "), LEVMAR_BLEC_DIF) "() in this case!\n");
|
|
return LM_ERROR;
|
|
}
|
|
if(!A || !b) k1=0; // sanity check
|
|
|
|
mm=m+k2;
|
|
|
|
if(n<m-k1){
|
|
fprintf(stderr, LCAT(LEVMAR_BLEIC_DIF, "(): cannot solve a problem with fewer measurements + equality constraints [%d + %d] than unknowns [%d]\n"), n, k1, m);
|
|
return LM_ERROR;
|
|
}
|
|
|
|
k12=k1+k2;
|
|
ptr=(LM_REAL *)malloc((3*mm + k12*mm + k12 + (covar? mm*mm : 0))*sizeof(LM_REAL));
|
|
if(!ptr){
|
|
fprintf(stderr, LCAT(LEVMAR_BLEIC_DIF, "(): memory allocation request failed\n"));
|
|
return LM_ERROR;
|
|
}
|
|
pext=ptr;
|
|
lbext=pext+mm;
|
|
ubext=lbext+mm;
|
|
Aext=ubext+mm;
|
|
bext=Aext+k12*mm;
|
|
data.jac=NULL;
|
|
covext=covar? bext+k12 : NULL;
|
|
data.nineqcnstr=k2;
|
|
data.func=func;
|
|
data.jacf=NULL;
|
|
data.adata=adata;
|
|
|
|
/* compute y s.t. C*p - y=d, i.e. y=C*p-d.
|
|
* y is stored in the last k2 elements of pext
|
|
*/
|
|
for(i=0; i<k2; ++i){
|
|
for(j=0, tmp=0.0; j<m; ++j)
|
|
tmp+=C[i*m+j]*p[j];
|
|
pext[j=i+m]=tmp-d[i];
|
|
|
|
/* surplus variables must be >=0 */
|
|
lbext[j]=0.0;
|
|
ubext[j]=LM_REAL_MAX;
|
|
}
|
|
/* set the first m elements of pext equal to p */
|
|
for(i=0; i<m; ++i){
|
|
pext[i]=p[i];
|
|
lbext[i]=lb? lb[i] : LM_REAL_MIN;
|
|
ubext[i]=ub? ub[i] : LM_REAL_MAX;
|
|
}
|
|
|
|
/* setup the constraints matrix */
|
|
/* original linear equation constraints */
|
|
for(i=0; i<k1; ++i){
|
|
for(j=0; j<m; ++j)
|
|
Aext[i*mm+j]=A[i*m+j];
|
|
|
|
for(j=m; j<mm; ++j)
|
|
Aext[i*mm+j]=0.0;
|
|
|
|
bext[i]=b[i];
|
|
}
|
|
/* linear equation constraints resulting from surplus variables */
|
|
for(i=0, ii=k1; i<k2; ++i, ++ii){
|
|
for(j=0; j<m; ++j)
|
|
Aext[ii*mm+j]=C[i*m+j];
|
|
|
|
for(j=m; j<mm; ++j)
|
|
Aext[ii*mm+j]=0.0;
|
|
|
|
Aext[ii*mm+m+i]=-1.0;
|
|
|
|
bext[ii]=d[i];
|
|
}
|
|
|
|
if(!info) info=locinfo; /* make sure that LEVMAR_BLEC_DIF() is called with non-null info */
|
|
/* note that the default weights for the penalty terms are being used below */
|
|
ret=LEVMAR_BLEC_DIF(LMBLEIC_FUNC, pext, x, mm, n, lbext, ubext, Aext, bext, k12, NULL, itmax, opts, info, work, covext, (void *)&data);
|
|
|
|
/* copy back the minimizer */
|
|
for(i=0; i<m; ++i)
|
|
p[i]=pext[i];
|
|
|
|
#if 0
|
|
printf("Surplus variables for the minimizer:\n");
|
|
for(i=m; i<mm; ++i)
|
|
printf("%g ", pext[i]);
|
|
printf("\n\n");
|
|
#endif
|
|
|
|
if(covar){
|
|
for(i=0; i<m; ++i){
|
|
for(j=0; j<m; ++j)
|
|
covar[i*m+j]=covext[i*mm+j];
|
|
}
|
|
}
|
|
|
|
free(ptr);
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
/* convenience wrappers to LEVMAR_BLEIC_DER/LEVMAR_BLEIC_DIF */
|
|
|
|
/* box & linear inequality constraints */
|
|
int LEVMAR_BLIC_DER(
|
|
void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata),
|
|
void (*jacf)(LM_REAL *p, LM_REAL *j, int m, int n, void *adata),
|
|
LM_REAL *p, LM_REAL *x, int m, int n,
|
|
LM_REAL *lb, LM_REAL *ub,
|
|
LM_REAL *C, LM_REAL *d, int k2,
|
|
int itmax, LM_REAL opts[4], LM_REAL info[LM_INFO_SZ], LM_REAL *work, LM_REAL *covar, void *adata)
|
|
{
|
|
return LEVMAR_BLEIC_DER(func, jacf, p, x, m, n, lb, ub, NULL, NULL, 0, C, d, k2, itmax, opts, info, work, covar, adata);
|
|
}
|
|
|
|
int LEVMAR_BLIC_DIF(
|
|
void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata),
|
|
LM_REAL *p, LM_REAL *x, int m, int n,
|
|
LM_REAL *lb, LM_REAL *ub,
|
|
LM_REAL *C, LM_REAL *d, int k2,
|
|
int itmax, LM_REAL opts[5], LM_REAL info[LM_INFO_SZ], LM_REAL *work, LM_REAL *covar, void *adata)
|
|
{
|
|
return LEVMAR_BLEIC_DIF(func, p, x, m, n, lb, ub, NULL, NULL, 0, C, d, k2, itmax, opts, info, work, covar, adata);
|
|
}
|
|
|
|
/* linear equation & inequality constraints */
|
|
int LEVMAR_LEIC_DER(
|
|
void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata),
|
|
void (*jacf)(LM_REAL *p, LM_REAL *j, int m, int n, void *adata),
|
|
LM_REAL *p, LM_REAL *x, int m, int n,
|
|
LM_REAL *A, LM_REAL *b, int k1,
|
|
LM_REAL *C, LM_REAL *d, int k2,
|
|
int itmax, LM_REAL opts[4], LM_REAL info[LM_INFO_SZ], LM_REAL *work, LM_REAL *covar, void *adata)
|
|
{
|
|
return LEVMAR_BLEIC_DER(func, jacf, p, x, m, n, NULL, NULL, A, b, k1, C, d, k2, itmax, opts, info, work, covar, adata);
|
|
}
|
|
|
|
int LEVMAR_LEIC_DIF(
|
|
void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata),
|
|
LM_REAL *p, LM_REAL *x, int m, int n,
|
|
LM_REAL *A, LM_REAL *b, int k1,
|
|
LM_REAL *C, LM_REAL *d, int k2,
|
|
int itmax, LM_REAL opts[5], LM_REAL info[LM_INFO_SZ], LM_REAL *work, LM_REAL *covar, void *adata)
|
|
{
|
|
return LEVMAR_BLEIC_DIF(func, p, x, m, n, NULL, NULL, A, b, k1, C, d, k2, itmax, opts, info, work, covar, adata);
|
|
}
|
|
|
|
/* linear inequality constraints */
|
|
int LEVMAR_LIC_DER(
|
|
void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata),
|
|
void (*jacf)(LM_REAL *p, LM_REAL *j, int m, int n, void *adata),
|
|
LM_REAL *p, LM_REAL *x, int m, int n,
|
|
LM_REAL *C, LM_REAL *d, int k2,
|
|
int itmax, LM_REAL opts[4], LM_REAL info[LM_INFO_SZ], LM_REAL *work, LM_REAL *covar, void *adata)
|
|
{
|
|
return LEVMAR_BLEIC_DER(func, jacf, p, x, m, n, NULL, NULL, NULL, NULL, 0, C, d, k2, itmax, opts, info, work, covar, adata);
|
|
}
|
|
|
|
int LEVMAR_LIC_DIF(
|
|
void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata),
|
|
LM_REAL *p, LM_REAL *x, int m, int n,
|
|
LM_REAL *C, LM_REAL *d, int k2,
|
|
int itmax, LM_REAL opts[5], LM_REAL info[LM_INFO_SZ], LM_REAL *work, LM_REAL *covar, void *adata)
|
|
{
|
|
return LEVMAR_BLEIC_DIF(func, p, x, m, n, NULL, NULL, NULL, NULL, 0, C, d, k2, itmax, opts, info, work, covar, adata);
|
|
}
|
|
|
|
/* undefine all. THIS MUST REMAIN AT THE END OF THE FILE */
|
|
#undef LMBLEIC_DATA
|
|
#undef LMBLEIC_ELIM
|
|
#undef LMBLEIC_FUNC
|
|
#undef LMBLEIC_JACF
|
|
#undef LEVMAR_FDIF_FORW_JAC_APPROX
|
|
#undef LEVMAR_COVAR
|
|
#undef LEVMAR_TRANS_MAT_MAT_MULT
|
|
#undef LEVMAR_BLEIC_DER
|
|
#undef LEVMAR_BLEIC_DIF
|
|
#undef LEVMAR_BLIC_DER
|
|
#undef LEVMAR_BLIC_DIF
|
|
#undef LEVMAR_LEIC_DER
|
|
#undef LEVMAR_LEIC_DIF
|
|
#undef LEVMAR_LIC_DER
|
|
#undef LEVMAR_LIC_DIF
|
|
#undef LEVMAR_BLEC_DER
|
|
#undef LEVMAR_BLEC_DIF
|