Files
GoldenCheetah/src/RideFileCache.h
Mark Liversedge e7bcaa2b25 Add VAM to CP curve
Very basic start, this will now let you plot
VAM on the CP curve. VAM is a measure of climbing
speed and for comparative purposes should be
normalised to the slope climbed.

In this first pass of implementation the VAM metric
is not normalised in any way. It merely represents
the climbing rate, in meters per hour, that was
sustained over each time interval from 5mins to the
ride duration.

If the ride is undulating then only ascension is
included, any time on the flat or descending is
included but meters climbed will be zero. This is
akin to the way we handle power where we include time
when freewheeling.

More sophistication is needed, especially normalising
the value to a common gradient (e.g. 10%). But this
will prove challenging when VAM is comprised of
undulating elements (i.e. gradient is cumulatively
zero, but could contain segments with steep parts).

It may be more appropriate to only measure VAM for
sustained climbing i.e. ignore ride sections when
descending or on the flat.

More thought needed.

Fixes #414.
2011-08-18 19:15:20 +01:00

263 lines
11 KiB
C++

/*
* Copyright (c) 2011 Mark Liversedge (liversedge@gmail.com)
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc., 51
* Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef _GC_RideFileCache_h
#define _GC_RideFileCache_h 1
#include "RideFile.h"
#include <QString>
#include <QDataStream>
#include <QVector>
#include <QThread>
class MainWindow;
class RideFile;
#include "GoldenCheetah.h"
// used by Mark Rages' Mean Max Algorithm
#include <stdlib.h>
#include <stdint.h>
typedef double data_t;
// RideFileCache is used to get meanmax and sample distribution
// arrays when plotting CP curves and histograms. It is precoputed
// to save time and cached in a file .cpx
//
static const unsigned int RideFileCacheVersion = 5;
// revision history:
// version date description
// 1 29-Apr-11 Initial - header, mean-max & distribution data blocks
// 2 02-May-11 Added LTHR/CP used to header and Time In Zone block
// 3 02-May-11 Moved to float precision not integer.
// 4 02-May-11 Moved to Mark Rages mean-max function with higher precision
// 5 18-Aug-11 Added VAM mean maximals
// The cache file (.cpx) has a binary format:
// 1 x Header data - describing the version and contents of the cache
// n x Blocks - meanmax or distribution arrays
// 1 x Watts TIZ - 10 floats
// 1 x Heartrate TIZ - 10 floats
// The header is written directly to disk, the only
// field which is endian sensitive is the count field
// which will always be written in local format since these
// files are local caches we do not worry about endianness
struct RideFileCacheHeader {
unsigned int version;
unsigned int wattsMeanMaxCount,
hrMeanMaxCount,
cadMeanMaxCount,
nmMeanMaxCount,
kphMeanMaxCount,
xPowerMeanMaxCount,
npMeanMaxCount,
vamMeanMaxCount,
wattsDistCount,
hrDistCount,
cadDistCount,
nmDistrCount,
kphDistCount,
xPowerDistCount,
npDistCount;
int LTHR, // used to calculate Time in Zone (TIZ)
CP; // used to calculate Time in Zone (TIZ)
};
// Each block of data is an array of uint32_t (32-bit "local-endian")
// integers so the "count" setting within the block definition tells
// us how long it is so we can read in one instruction and reference
// it directly. Of course, this means that for data series that require
// decimal places (e.g. speed) they are stored multiplied by 10^dp.
// so 27.1 is stored as 271, 27.454 is stored as 27454, 100.0001 is
// stored as 1000001.
// So that none of the plots need to understand the format of this
// cache file this class is repsonsible for supplying the pre-computed
// values they desire. If the values have not been computed or are
// out of date then they are computed as needed.
//
// This cache is also updated by the metricaggregator to ensure it
// is updated alongside the metrics. So, in theory, at runtime, once
// the arrays have been computed they can be retrieved quickly.
//
// This is the main user entry to the ridefile cached data.
class RideFileCache
{
public:
enum cachetype { meanmax, distribution, none };
typedef enum cachetype CacheType;
// Construct from a ridefile or its filename
// will reference cache if it exists, and create it
// if it doesn't. We allow to create from ridefile to
// save on ridefile reading if it is already opened by
// the calling class.
// to save time you can pass the ride file if you already have it open
// and if you don't want the data and just want to check pass check=true
RideFileCache(MainWindow *main, QString filename, RideFile *ride =0, bool check = false);
// Construct a ridefile cache that represents the data
// across a date range. This is used to provide aggregated data.
RideFileCache(MainWindow *main, QDate start, QDate end);
// get data
QVector<double> &meanMaxArray(RideFile::SeriesType); // return meanmax array for the given series
QVector<QDate> &meanMaxDates(RideFile::SeriesType series); // the dates of the bests
QVector<double> &distributionArray(RideFile::SeriesType); // return distribution array for the given series
QVector<float> &wattsZoneArray() { return wattsTimeInZone; }
QVector<float> &hrZoneArray() { return hrTimeInZone; }
// explain the array binning / sampling
double &distBinSize(RideFile::SeriesType); // return distribution bin size
double &meanMaxBinSize(RideFile::SeriesType); // return distribution bin size
protected:
void refreshCache(); // compute arrays and update cache
void readCache(); // just read from saved file and setup arrays
void serialize(QDataStream *out); // write to file
void compute(); // compute all arrays
// NOW replaced computeMeanMax with MeanMaxComputer class see bottom of file
//void computeMeanMax(QVector<float>&, RideFile::SeriesType); // compute mean max arrays
void computeDistribution(QVector<float>&, RideFile::SeriesType); // compute the distributions
private:
MainWindow *main;
QString rideFileName; // filename of ride
QString cacheFileName; // filename of cache file
RideFile *ride;
// used for zoning
int CP;
int LTHR;
// Should be 1 regardless of the rideFile::recIntSecs
// this might change in the future - but at the moment
// means that the data is "smoothed" to 1s samples
static const double _meanMaxBinSize = 1.0;
//
// MEAN MAXIMAL VALUES
//
// each array has a best for duration 0 - RideDuration seconds
QVector<float> wattsMeanMax; // RideFile::watts
QVector<float> hrMeanMax; // RideFile::hr
QVector<float> cadMeanMax; // RideFile::cad
QVector<float> nmMeanMax; // RideFile::nm
QVector<float> kphMeanMax; // RideFile::kph
QVector<float> xPowerMeanMax; // RideFile::kph
QVector<float> npMeanMax; // RideFile::kph
QVector<float> vamMeanMax; // RideFile::vam
QVector<double> wattsMeanMaxDouble; // RideFile::watts
QVector<double> hrMeanMaxDouble; // RideFile::hr
QVector<double> cadMeanMaxDouble; // RideFile::cad
QVector<double> nmMeanMaxDouble; // RideFile::nm
QVector<double> kphMeanMaxDouble; // RideFile::kph
QVector<double> xPowerMeanMaxDouble; // RideFile::kph
QVector<double> npMeanMaxDouble; // RideFile::kph
QVector<double> vamMeanMaxDouble; // RideFile::kph
QVector<QDate> wattsMeanMaxDate; // RideFile::watts
QVector<QDate> hrMeanMaxDate; // RideFile::hr
QVector<QDate> cadMeanMaxDate; // RideFile::cad
QVector<QDate> nmMeanMaxDate; // RideFile::nm
QVector<QDate> kphMeanMaxDate; // RideFile::kph
QVector<QDate> xPowerMeanMaxDate; // RideFile::kph
QVector<QDate> npMeanMaxDate; // RideFile::kph
QVector<QDate> vamMeanMaxDate; // RideFile::vam
//
// SAMPLE DISTRIBUTION
//
// the distribution matches RideFile::decimalsFor(SeriesType series);
// each array contains a count (duration in recIntSecs) for each distrbution
// from RideFile::minimumFor() to RideFile::maximumFor(). The steps (binsize)
// is 1.0 or if the dataseries in question does have a nonZero value for
// RideFile::decimalsFor() then it will be distributed in 0.1 of a unit
QVector<float> wattsDistribution; // RideFile::watts
QVector<float> hrDistribution; // RideFile::hr
QVector<float> cadDistribution; // RideFile::cad
QVector<float> nmDistribution; // RideFile::nm
QVector<float> kphDistribution; // RideFile::kph
QVector<float> xPowerDistribution; // RideFile::kph
QVector<float> npDistribution; // RideFile::kph
QVector<double> wattsDistributionDouble; // RideFile::watts
QVector<double> hrDistributionDouble; // RideFile::hr
QVector<double> cadDistributionDouble; // RideFile::cad
QVector<double> nmDistributionDouble; // RideFile::nm
QVector<double> kphDistributionDouble; // RideFile::kph
QVector<double> xPowerDistributionDouble; // RideFile::kph
QVector<double> npDistributionDouble; // RideFile::kph
QVector<float> wattsTimeInZone; // time in zone in seconds
QVector<float> hrTimeInZone; // time in zone in seconds
// we need to return doubles not longs, we just use longs
// to reduce disk storage
void doubleArray(QVector<double> &into, QVector<float> &from, RideFile::SeriesType series);
};
// Working structured inherited from CpintPlot.cpp
// could probably be factored out and just use the
// ridefile structures, but this keeps well tested
// and stable legacy code intact
struct cpintpoint {
double secs;
double value;
cpintpoint() : secs(0.0), value(0) {}
cpintpoint(double s, int w) : secs(s), value(w) {}
};
struct cpintdata {
QStringList errors;
QVector<cpintpoint> points;
int rec_int_ms;
cpintdata() : rec_int_ms(0) {}
};
// the mean-max computer ... runs in a thread
class MeanMaxComputer : public QThread
{
public:
MeanMaxComputer(RideFile *ride, QVector<float>&array, RideFile::SeriesType series)
: ride(ride), array(array), series(series) {}
void run();
private:
// Mark Rages' algorithm for fast find of mean max
data_t *integrate_series(cpintdata &data);
data_t partial_max_mean(data_t *dataseries_i, int start, int end, int length, int *offset);
data_t divided_max_mean(data_t *dataseries_i, int datalength, int length, int *offset);
RideFile *ride;
QVector<float> &array;
QVector<data_t> integratedArray;
RideFile::SeriesType series;
};
#endif // _GC_RideFileCache_h