Files
GoldenCheetah/src/CpintPlot.cpp
2009-12-17 19:10:36 -05:00

780 lines
25 KiB
C++

/*
* Copyright (c) 2006 Sean C. Rhea (srhea@srhea.net)
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc., 51
* Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "Zones.h"
#include "CpintPlot.h"
#include <assert.h>
#include <unistd.h>
#include <QDebug>
#include <qwt_data.h>
#include <qwt_legend.h>
#include <qwt_plot_curve.h>
#include <qwt_plot_grid.h>
#include <qwt_plot_marker.h>
#include <qwt_scale_engine.h>
#include "RideItem.h"
#include "LogTimeScaleDraw.h"
#include "LogTimeScaleEngine.h"
#include "RideFile.h"
#include "Season.h"
#include <boost/scoped_ptr.hpp>
#include <algorithm> // for std::lower_bound
#define USE_T0_IN_CP_MODEL 0 // added djconnel 08Apr2009: allow 3-parameter CP model
CpintPlot::CpintPlot(QString p, const Zones *zones) :
needToScanRides(true),
path(p),
thisCurve(NULL),
CPCurve(NULL),
zones(zones),
energyMode_(false)
{
assert(!USE_T0_IN_CP_MODEL); // doesn't work with energyMode=true
insertLegend(new QwtLegend(), QwtPlot::BottomLegend);
setCanvasBackground(Qt::white);
setAxisTitle(yLeft, tr("Average Power (watts)"));
setAxisTitle(xBottom, tr("Interval Length"));
setAxisScaleDraw(xBottom, new LogTimeScaleDraw);
setAxisScaleEngine(xBottom, new LogTimeScaleEngine);
setAxisScale(xBottom, 1.0 / 60.0, 60);
grid = new QwtPlotGrid();
grid->enableX(false);
QPen gridPen;
gridPen.setStyle(Qt::DotLine);
grid->setPen(gridPen);
grid->attach(this);
}
struct cpi_file_info {
QString file, inname, outname;
};
QString
ride_filename_to_cpi_filename(const QString filename)
{
return (QFileInfo(filename).completeBaseName() + ".cpi");
}
static void
cpi_files_to_update(const QDir &dir, QList<cpi_file_info> &result)
{
QStringList filenames = RideFileFactory::instance().listRideFiles(dir);
foreach (const QString &filename, filenames) {
if (RideFileFactory::instance().rideFileRegExp().exactMatch(filename)) {
QString inname = dir.absoluteFilePath(filename);
QString outname =
dir.absoluteFilePath(ride_filename_to_cpi_filename(filename));
QFileInfo ifi(inname), ofi(outname);
if (!ofi.exists() || (ofi.lastModified() < ifi.lastModified())) {
cpi_file_info info;
info.file = filename;
info.inname = inname;
info.outname = outname;
result.append(info);
}
}
}
}
struct cpint_point
{
double secs;
int watts;
cpint_point() : secs(0.0), watts(0) {}
cpint_point(double s, int w) : secs(s), watts(w) {}
};
struct cpint_data {
QStringList errors;
QVector<cpint_point> points;
int rec_int_ms;
cpint_data() : rec_int_ms(0) {}
};
static void
update_cpi_file(const cpi_file_info *info, QProgressDialog *progress,
double &progress_sum, double progress_max)
{
QFile file(info->inname);
QStringList errors;
boost::scoped_ptr<RideFile> rideFile(
RideFileFactory::instance().openRideFile(file, errors));
if (! rideFile)
return;
cpint_data data;
data.rec_int_ms = (int) round(rideFile->recIntSecs() * 1000.0);
foreach (const RideFilePoint *p, rideFile->dataPoints()) {
double secs = round(p->secs * 1000.0) / 1000;
if (secs > 0)
data.points.append(cpint_point(secs, (int) round(p->watts)));
}
FILE *out = fopen(info->outname.toAscii().constData(), "w");
assert(out);
int total_secs = (int) ceil(data.points.back().secs);
// don't allow data more than one week
#define SECONDS_PER_WEEK 7 * 24 * 60 * 60
if (total_secs > SECONDS_PER_WEEK) {
fclose(out);
return;
}
QVector <double> ride_bests(total_secs + 1);
bool canceled = false;
int progress_count = 0;
for (int i = 0; i < data.points.size() - 1; ++i) {
cpint_point *p = &data.points[i];
double sum = 0.0;
double prev_secs = p->secs;
for (int j = i + 1; j < data.points.size(); ++j) {
cpint_point *q = &data.points[j];
if (++progress_count % 1000 == 0) {
double x = (progress_count + progress_sum)
/ progress_max * 1000.0;
// Use min() just in case math is wrong...
int n = qMin((int) round(x), 1000);
progress->setValue(n);
QCoreApplication::processEvents();
if (progress->wasCanceled()) {
canceled = true;
goto done;
}
}
sum += data.rec_int_ms / 1000.0 * q->watts;
double dur_secs = q->secs - p->secs;
double avg = sum / dur_secs;
int dur_secs_top = (int) floor(dur_secs);
int dur_secs_bot =
qMax((int) floor(dur_secs - data.rec_int_ms / 1000.0), 0);
for (int k = dur_secs_top; k > dur_secs_bot; --k) {
if (ride_bests[k] < avg)
ride_bests[k] = avg;
}
prev_secs = q->secs;
}
}
// avoid decreasing work with increasing duration
{
double maxwork = 0.0;
for (int i = 1; i <= total_secs; ++i) {
// note index is being used here in lieu of time, as the index
// is assumed to be proportional to time
double work = ride_bests[i] * i;
if (maxwork > work)
ride_bests[i] = round(maxwork / i);
else
maxwork = work;
if (ride_bests[i] != 0)
fprintf(out, "%6.3f %3.0f\n", i / 60.0, round(ride_bests[i]));
}
}
done:
fclose(out);
if (canceled)
unlink(info->outname.toAscii().constData());
progress_sum += progress_count;
}
static QDate
cpi_filename_to_date(const QString filename) {
QRegExp rx("^(\\d\\d\\d\\d)_(\\d\\d)_(\\d\\d)_\\d\\d_\\d\\d_\\d\\d\\.cpi$");
if (rx.exactMatch(filename)) {
assert(rx.numCaptures() == 3);
QDate date(rx.cap(1).toInt(), rx.cap(2).toInt(), rx.cap(3).toInt());
if (date.isValid())
return date;
}
return QDate(); // nil date
}
static int
read_one(const QDir& dir, const QString &filename, QVector<double> &bests,
QVector<QDate> *bestDates, QHash<QString,bool> *cpiDataInBests)
{
QString inname = dir.absoluteFilePath(filename);
FILE *in = fopen(inname.toAscii().constData(), "r");
if (!in)
return -1;
int lineno = 1;
char line[40];
while (fgets(line, sizeof(line), in) != NULL) {
double mins;
int watts;
if (sscanf(line, "%lf %d\n", &mins, &watts) != 2) {
QMessageBox::warning(
NULL, "Warning",
QString("Error reading %1, line %2").arg(inname).arg(line),
QMessageBox::Ok,
QMessageBox::NoButton);
fclose(in);
return -1;
}
int secs = (int) round(mins * 60.0);
if (secs >= bests.size()) {
bests.resize(secs + 1);
if (bestDates)
bestDates->resize(secs + 1);
}
if (bests[secs] < watts){
bests[secs] = watts;
if (bestDates)
(*bestDates)[secs] = cpi_filename_to_date(filename);
// mark the filename as having contributed to the bests
// Note this contribution may subsequently be over-written, so
// for example the first file scanned will always be tagged.
if (cpiDataInBests)
(*cpiDataInBests)[inname] = true;
}
++lineno;
}
fclose(in);
return 0;
}
void
CpintPlot::changeSeason(const QDate &start, const QDate &end)
{
startDate = start;
endDate = end;
needToScanRides = true;
delete CPCurve;
CPCurve = NULL;
clear_CP_Curves();
}
void
CpintPlot::setEnergyMode(bool value)
{
energyMode_ = value;
if (energyMode_) {
setAxisTitle(yLeft, tr("Total work (kJ)"));
setAxisScaleEngine(xBottom, new QwtLinearScaleEngine);
setAxisScaleDraw(xBottom, new QwtScaleDraw);
setAxisTitle(xBottom, tr("Interval Length (minutes)"));
}
else {
setAxisTitle(yLeft, tr("Average Power (watts)"));
setAxisScaleEngine(xBottom, new LogTimeScaleEngine);
setAxisScaleDraw(xBottom, new LogTimeScaleDraw);
setAxisTitle(xBottom, tr("Interval Length"));
}
delete CPCurve;
CPCurve = NULL;
clear_CP_Curves();
}
// extract critical power parameters which match the given curve
// model: maximal power = cp (1 + tau / [t + t0]), where t is the
// duration of the effort, and t, cp and tau are model parameters
// the basic critical power model is t0 = 0, but non-zero has
// been discussed in the literature
// it is assumed duration = index * seconds
void
CpintPlot::deriveCPParameters()
{
// bounds on anaerobic interval in minutes
const double t1 = USE_T0_IN_CP_MODEL ? 0.25 : 1;
const double t2 = 6;
// bounds on aerobic interval in minutes
const double t3 = 10;
const double t4 = 60;
// bounds of these time valus in the data
int i1, i2, i3, i4;
// find the indexes associated with the bounds
// the first point must be at least the minimum for the anaerobic interval, or quit
for (i1 = 0; i1 < 60 * t1; i1++)
if (i1 + 1 >= bests.size())
return;
// the second point is the maximum point suitable for anaerobicly dominated efforts.
for (i2 = i1; i2 + 1 <= 60 * t2; i2++)
if (i2 + 1 >= bests.size())
return;
// the third point is the beginning of the minimum duration for aerobic efforts
for (i3 = i2; i3 < 60 * t3; i3++)
if (i3 + 1 >= bests.size())
return;
for (i4 = i3; i4 + 1 <= 60 * t4; i4++)
if (i4 + 1 >= bests.size())
break;
// initial estimate of tau
if (tau == 0)
tau = 1;
// initial estimate of cp (if not already available)
if (cp == 0)
cp = 300;
// initial estimate of t0: start small to maximize sensitivity to data
t0 = 0;
// lower bound on tau
const double tau_min = 0.5;
// convergence delta for tau
const double tau_delta_max = 1e-4;
const double t0_delta_max = 1e-4;
// previous loop value of tau and t0
double tau_prev;
double t0_prev;
// maximum number of loops
const int max_loops = 100;
// loop to convergence
int iteration = 0;
do {
if (iteration ++ > max_loops) {
QMessageBox::warning(
NULL, "Warning",
QString("Maximum number of loops %d exceeded in cp model"
"extraction").arg(max_loops),
QMessageBox::Ok,
QMessageBox::NoButton);
break;
}
// record the previous version of tau, for convergence
tau_prev = tau;
t0_prev = t0;
// estimate cp, given tau
int i;
cp = 0;
for (i = i3; i <= i4; i++) {
double cpn = bests[i] / (1 + tau / (t0 + i / 60.0));
if (cp < cpn)
cp = cpn;
}
// if cp = 0; no valid data; give up
if (cp == 0.0)
return;
// estimate tau, given cp
tau = tau_min;
for (i = i1; i <= i2; i++) {
double taun = (bests[i] / cp - 1) * (i / 60.0 + t0) - t0;
if (tau < taun)
tau = taun;
}
// update t0 if we're using that model
#if USE_T0_IN_CP_MODEL
t0 = tau / (bests[1] / cp - 1) - 1 / 60.0;
#endif
} while ((fabs(tau - tau_prev) > tau_delta_max) ||
(fabs(t0 - t0_prev) > t0_delta_max)
);
}
void
CpintPlot::plot_CP_curve(CpintPlot *thisPlot, // the plot we're currently displaying
double cp,
double tau,
double t0)
{
if (CPCurve) {
delete CPCurve;
CPCurve = NULL;
}
// if there's no cp, then there's nothing to do
if (cp <= 0)
return;
// populate curve data with a CP curve
const int curve_points = 100;
double tmin = USE_T0_IN_CP_MODEL ? 1.0/60 : tau;
double tmax = 180.0;
QVector<double> cp_curve_power(curve_points);
QVector<double> cp_curve_time(curve_points);
int i;
for (i = 0; i < curve_points; i ++) {
double x = (double) i / (curve_points - 1);
double t = pow(tmax, x) * pow(tmin, 1-x);
cp_curve_time[i] = t;
if (energyMode_)
cp_curve_power[i] = (cp * t + cp * tau) * 60.0 / 1000.0;
else
cp_curve_power[i] = cp * (1 + tau / (t + t0));
}
// generate a plot
QString curve_title;
#if USE_T0_IN_CP_MODEL
curve_title.sprintf("CP=%.1f W; AWC/CP=%.2f m; t0=%.1f s", cp, tau, 60 * t0);
#else
curve_title.sprintf("CP=%.0f W; AWC=%.0f kJ", cp, cp * tau * 60.0 / 1000.0);
#endif
CPCurve = new QwtPlotCurve(curve_title);
CPCurve->setRenderHint(QwtPlotItem::RenderAntialiased);
QPen pen(Qt::red);
pen.setWidth(2.0);
pen.setStyle(Qt::DashLine);
CPCurve->setPen(pen);
CPCurve->setData(cp_curve_time.data(), cp_curve_power.data(), curve_points);
CPCurve->attach(thisPlot);
}
void
CpintPlot::clear_CP_Curves()
{
// unattach any existing shading curves and reset the list
if (allCurves.size()) {
foreach (QwtPlotCurve *curve, allCurves)
delete curve;
allCurves.clear();
}
// now delete any labels
if (allZoneLabels.size()) {
foreach (QwtPlotMarker *label, allZoneLabels)
delete label;
allZoneLabels.clear();
}
}
void
CpintPlot::plot_allCurve(CpintPlot *thisPlot,
int n_values,
const double *power_values)
{
clear_CP_Curves();
QVector<double> energyBests(n_values);
QVector<double> time_values(n_values);
// generate an array of time values
for (int t = 0; t < n_values; t++) {
time_values[t] = (t + 1) / 60.0;
energyBests[t] = power_values[t] * time_values[t] * 60.0 / 1000.0;
}
// generate zones from derived CP value
if (cp > 0) {
QList <int> power_zone;
int n_zones = zones->lowsFromCP(&power_zone, (int) int(cp));
int high = n_values - 1;
int zone = 0;
while (zone < n_zones && high > 0) {
int low = high - 1;
int nextZone = zone + 1;
if (nextZone >= power_zone.size())
low = 0;
else {
while ((low > 0) && (power_values[low] < power_zone[nextZone]))
--low;
}
QColor color = zoneColor(zone, n_zones);
QString name = zones->getDefaultZoneName(zone);
QwtPlotCurve *curve = new QwtPlotCurve(name);
curve->setRenderHint(QwtPlotItem::RenderAntialiased);
QPen pen(color);
pen.setWidth(2.0);
curve->setPen(pen);
curve->attach(thisPlot);
color.setAlpha(64);
curve->setBrush(color); // brush fills below the line
if (energyMode_) {
curve->setData(time_values.data() + low,
energyBests.data() + low, high - low + 1);
}
else {
curve->setData(time_values.data() + low,
power_values + low, high - low + 1);
}
allCurves.append(curve);
if (!energyMode_ || energyBests[high] > 100.0) {
QwtText text(name);
text.setFont(QFont("Helvetica", 24, QFont::Bold));
color.setAlpha(128);
text.setColor(color);
QwtPlotMarker *label_mark = new QwtPlotMarker();
// place the text in the geometric mean in time, at a decent power
double x, y;
if (energyMode_) {
x = (time_values[low] + time_values[high]) / 2;
y = (energyBests[low] + energyBests[high]) / 5;
}
else {
x = sqrt(time_values[low] * time_values[high]);
y = (power_values[low] + power_values[high]) / 5;
}
label_mark->setValue(x, y);
label_mark->setLabel(text);
label_mark->attach(thisPlot);
allZoneLabels.append(label_mark);
}
high = low - 1;
++zone;
}
}
// no zones available: just plot the curve without zones
else {
QwtPlotCurve *curve = new QwtPlotCurve(tr("maximal power"));
curve->setRenderHint(QwtPlotItem::RenderAntialiased);
QPen pen(Qt::red);
pen.setWidth(2.0);
curve->setPen(pen);
QColor brush_color = Qt::red;
brush_color.setAlpha(64);
curve->setBrush(brush_color); // brush fills below the line
if (energyMode_)
curve->setData(time_values.data(), energyBests.data(), n_values);
else
curve->setData(time_values.data(), power_values, n_values);
curve->attach(thisPlot);
allCurves.append(curve);
}
// Energy mode is really only interesting in the range where energy is
// linear in interval duration--up to about 1 hour.
double xmax = energyMode_ ? 60.0 : time_values[n_values - 1];
thisPlot->setAxisScale(thisPlot->xBottom, 1.0 / 60, xmax);
double ymax;
if (energyMode_) {
int i = std::lower_bound(time_values.begin(), time_values.end(), 60.0) - time_values.begin();
ymax = 10 * ceil(energyBests[i] / 10);
}
else {
ymax = 100 * ceil(power_values[0] / 100);
}
thisPlot->setAxisScale(thisPlot->yLeft, 0, ymax);
}
void
CpintPlot::calculate(RideItem *rideItem)
{
QString fileName = rideItem->fileName;
QDateTime dateTime = rideItem->dateTime;
QDir dir(path);
QFileInfo file(fileName);
if (needToScanRides) {
bests.clear();
bestDates.clear();
cpiDataInBests.clear();
bool aborted = false;
QList<cpi_file_info> to_update;
cpi_files_to_update(dir, to_update);
double progress_max = 0.0;
if (!to_update.empty()) {
foreach (const cpi_file_info &info, to_update) {
QFile file(info.inname);
QStringList errors;
boost::scoped_ptr<RideFile> rideFile(
RideFileFactory::instance().openRideFile(file, errors));
if (rideFile) {
double x = rideFile->dataPoints().size();
progress_max += x * (x + 1.0) / 2.0;
}
}
}
QProgressDialog progress(
QString(tr("Computing critical power intervals.\n"
"This may take a while.\n")),
tr("Abort"), 0, 1000, this);
double progress_sum = 0.0;
int endingOffset = progress.labelText().size();
if (!to_update.empty()) {
int count = 1;
foreach (const cpi_file_info &info, to_update) {
QString existing = progress.labelText();
existing.chop(progress.labelText().size() - endingOffset);
progress.setLabelText(
existing + QString(tr("Processing %1...")).arg(info.file));
progress.setValue(count++);
update_cpi_file(&info, &progress, progress_sum, progress_max);
QCoreApplication::processEvents();
if (progress.wasCanceled()) {
aborted = true;
break;
}
}
}
if (!aborted) {
QString existing = progress.labelText();
existing.chop(progress.labelText().size() - endingOffset);
QStringList filters;
filters << "*.cpi";
QStringList list = dir.entryList(filters, QDir::Files, QDir::Name);
list = filterForSeason(list, startDate, endDate);
progress.setLabelText(
existing + tr("Aggregating over all files."));
progress.setRange(0, list.size());
progress.setValue(0);
progress.show();
foreach (const QString &filename, list) {
QString path = dir.absoluteFilePath(filename);
read_one(dir, filename, bests, &bestDates, &cpiDataInBests);
progress.setValue(progress.value() + 1);
QCoreApplication::processEvents();
if (progress.wasCanceled()) {
aborted = true;
break;
}
}
}
if (!aborted && bests.size()) {
// check that total work doesn't decrease with time
double maxwork = 0.0;
for (int i = 0; i < bests.size(); ++i) {
// note index is being used here in lieu of time, as the index
// is assumed to be proportional to time
double work = bests[i] * i;
if ((i > 0) && (maxwork > work)) {
bests[i] = round(maxwork / i);
bestDates[i] = bestDates[i - 1];
}
else
maxwork = work;
}
// derive CP model
if (bests.size() > 1) {
// cp model parameters
cp = 0;
tau = 0;
t0 = 0;
// calculate CP model from all-time best data
deriveCPParameters();
}
needToScanRides = false;
}
}
if (!needToScanRides) {
if (!CPCurve)
plot_CP_curve(this, cp, tau, t0);
if (allCurves.empty()) {
int maxNonZero = 0;
for (int i = 0; i < bests.size(); ++i) {
if (bests[i] > 0)
maxNonZero = i;
}
plot_allCurve(this, maxNonZero - 1, bests.constData() + 1);
}
if (thisCurve) {
delete thisCurve;
thisCurve = NULL;
}
QVector<double> bests;
QString filename = file.completeBaseName() + ".cpi";
if ((read_one(dir, filename, bests, NULL, NULL) == 0) && bests.size()) {
QVector<double> energyArray(bests.size());
QVector<double> timeArray(bests.size());
int maxNonZero = 0;
for (int i = 0; i < bests.size(); ++i) {
timeArray[i] = i / 60.0;
energyArray[i] = timeArray[i] * bests[i] * 60.0 / 1000.0;
if (bests[i] > 0) maxNonZero = i;
}
if (maxNonZero > 1) {
thisCurve = new QwtPlotCurve(
dateTime.toString(tr("ddd MMM d, yyyy h:mm AP")));
thisCurve->setRenderHint(QwtPlotItem::RenderAntialiased);
thisCurve->setPen(QPen(Qt::black));
thisCurve->attach(this);
if (energyMode_) {
thisCurve->setData(timeArray.data() + 1,
energyArray.constData() + 1,
maxNonZero - 1);
}
else {
thisCurve->setData(timeArray.data() + 1,
bests.constData() + 1,
maxNonZero - 1);
}
}
}
}
replot();
}
// delete a CPI file
bool
CpintPlot::deleteCpiFile(QString filename)
{
// first, get ride of the file
if (! QFile::remove(filename))
return false;
// now check to see if this file contributed to the bests
// in the current implementation a false means it does
// not contribute, but a true only means it at one time
// contributed (may not in the end).
if (cpiDataInBests.contains(filename)) {
if (cpiDataInBests[filename])
needToScanRides = true;
cpiDataInBests.remove(filename);
}
return true;
}
void
CpintPlot::showGrid(int state)
{
assert(state != Qt::PartiallyChecked);
grid->setVisible(state == Qt::Checked);
replot();
}
QStringList
CpintPlot::filterForSeason(QStringList cpints, QDate startDate, QDate endDate)
{
//Check to see if no date was assigned.
QDate nilDate;
if(startDate == nilDate)
return cpints;
QStringList returnList;
foreach (const QString &cpi, cpints) {
QDate cpiDate = cpi_filename_to_date(cpi);
if(cpiDate > startDate && cpiDate < endDate)
returnList << cpi;
}
return returnList;
}