Files
GoldenCheetah/src/WPrime.cpp
Mark Liversedge 89a5ca2634 Added W' expenditure metric
.. energy spent above CP
2014-01-20 20:33:33 +00:00

411 lines
11 KiB
C++

/*
* Copyright (c) 2013 Mark Liversedge (liversedge@gmail.com)
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc., 51
* Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
// Many thanks for the gracious support from Dr Philip Skiba for this
// component. Not only did Dr Phil happily agree for us to re-use his
// research, but also provided information and guidance to assist in the
// implementation.
//
// This code implements the W replenishment / utilisation algorithm
// as defined in "Modeling the Expenditure and Reconstitution of Work Capacity
// above Critical Power." Med Sci Sports Exerc 2012;:1.
//
// The actual code is derived from an MS Office Excel spreadsheet shared
// privately to assist in the development of the code.
//
// There is definitely room form a performance improvement from anyone
// with a greater math expertise than this developer. I suspect that is
// most!
//
#include "WPrime.h"
const double WprimeMultConst = 1.0;
const int WprimeDecayPeriod = 1200; // 1200 seconds or 20 minutes
const double E = 2.71828183;
const int WprimeMatchSmoothing = 25; // 25 sec smoothing looking for matches
const int WprimeMatchMinJoules = 100;
WPrime::WPrime()
{
// XXX will need to reset metrics when they are added
minY = maxY = 0;
}
void
WPrime::setRide(RideFile *input)
{
QTime time; // for profiling performance of the code
time.start();
// remember the ride for next time
rideFile = input;
// reset from previous
values.resize(0); // the memory is kept for next time so this is efficient
xvalues.resize(0);
CP = WPRIME = TAU=0;
minY = maxY = WPRIME;
// no data or no power data then forget it.
if (!input || input->dataPoints().count() == 0 || input->areDataPresent()->watts == false) {
return;
}
// STEP 1: CONVERT POWER DATA TO A 1 SECOND TIME SERIES
// create a raw time series in the format QwtSpline wants
QVector<QPointF> points;
int last=0;
if (input->recIntSecs() >= 1) {
RideFilePoint *lp=NULL;
foreach(RideFilePoint *p, input->dataPoints()) {
// fill gaps in recording with zeroes
if (lp)
for(int t=lp->secs+input->recIntSecs();
t < p->secs;
t += input->recIntSecs())
points << QPointF(t, 0);
// lets not go backwards -- or two sampls at the same time
if ((lp && p->secs > lp->secs) || !lp)
points << QPointF(p->secs, p->watts);
// update state
last = p->secs;
lp = p;
}
} else {
foreach(RideFilePoint *p, input->dataPoints()) {
points << QPointF(p->secs, p->watts);
last = p->secs;
}
}
// Create a spline
QwtSpline smoothed;
smoothed.setSplineType(QwtSpline::Natural);
smoothed.setPoints(QPolygonF(points));
// Get CP
CP = 250; // default
if (input->context->athlete->zones()) {
int zoneRange = input->context->athlete->zones()->whichRange(input->startTime().date());
CP = zoneRange >= 0 ? input->context->athlete->zones()->getCP(zoneRange) : 0;
WPRIME = zoneRange >= 0 ? input->context->athlete->zones()->getWprime(zoneRange) : 0;
// did we override CP in metadata / metrics ?
int oCP = input->getTag("CP","0").toInt();
if (oCP) CP=oCP;
}
// since we will be running up and down the data series multiple times
// as we iterate and run a SUMPRODUCT it is best to extract the data
// into a vector of ints for the watts above CP
double totalBelowCP=0;
double countBelowCP=0;
QVector<int> inputArray(last+1);
EXP = 0;
for (int i=0; i<last; i++) {
int value = smoothed.value(i);
inputArray[i] = value > CP ? value-CP : 0;
if (value < CP) {
totalBelowCP += value;
countBelowCP++;
} else EXP += value; // total expenditure above CP
}
TAU = 546.00f * pow(E,-0.01*(CP - (totalBelowCP/countBelowCP))) + 316.00f;
TAU = int(TAU); // round it down
//qDebug()<<"data preparation took"<<time.elapsed();
// STEP 2: ITERATE OVER DATA TO CREATE W' DATA SERIES
// initialise with Wbal equal to W' and therefore 0 expenditure
double Wbal = WPRIME;
double Wexp = 0;
int u = 0;
// lets run forward from 0s to end of ride
minY = WPRIME;
maxY = WPRIME;
values.resize(last+1);
xvalues.resize(last+1);
for (int t=0; t<=last; t++) {
// because we work with watts per second
// joules = watts * 1 i.e. joules = watts
double watts = smoothed.value(t);
if (watts > CP) {
Wbal -= (watts-CP); // expending
Wexp = WPRIME-Wbal;
u = t;
} else {
// calculate bal
Wbal = WPRIME - (Wexp * pow(E, -(double(t-u)/TAU)));
}
// update arrays
xvalues[t] = double(t)/60.00f;
values[t] = Wbal;
// min / max
if (Wbal < minY) minY = Wbal;
if (Wbal > maxY) maxY = Wbal;
}
// STEP 3: FIND MATCHES
// SMOOTH DATA SERIES
// get raw data adjusted to 1s intervals (as before)
QVector<int> smoothArray(last+1);
QVector<int> rawArray(last+1);
for (int i=0; i<last; i++) {
smoothArray[i] = smoothed.value(i);
rawArray[i] = smoothed.value(i);
}
// initialise rolling average
double rtot = 0;
for (int i=WprimeMatchSmoothing; i>0 && last-i >=0; i--) {
rtot += smoothArray[last-i];
}
// now run backwards setting the rolling average
for (int i=last; i>=WprimeMatchSmoothing; i--) {
int here = smoothArray[i];
smoothArray[i] = rtot / WprimeMatchSmoothing;
rtot -= here;
rtot += smoothArray[i-WprimeMatchSmoothing];
}
// FIND MATCHES -- INTERVALS WHERE POWER > CP
// AND W' DEPLETED BY > WprimeMatchMinJoules
bool inmatch=false;
matches.clear();
mvalues.clear();
mxvalues.clear();
for(int i=0; i<last; i++) {
Match match;
if (!inmatch && (smoothArray[i] >= CP || rawArray[i] >= CP)) {
inmatch=true;
match.start=i;
}
if (inmatch && (smoothArray[i] < CP && rawArray[i] < CP)) {
// lets work backwards as we're at the end
// we only care about raw data to avoid smoothing
// artefacts
int end=i-1;
while (end > match.start && rawArray[end] < CP) {
end--;
}
if (end > match.start) {
match.stop = end;
match.secs = (match.stop-match.start) +1; // don't fencepost!
match.cost = values[match.start] - values[match.stop];
if (match.cost >= WprimeMatchMinJoules) {
matches << match;
}
}
inmatch=false;
}
}
// SET MATCH SERIES FOR ALLPLOT CHART
foreach (struct Match match, matches) {
// we only count 1kj asa match
if (match.cost >= 2000) { //XXX need to agree how to define a match -- or even if we want to...
mvalues << values[match.start];
mxvalues << xvalues[match.start];
mvalues << values[match.stop];
mxvalues << xvalues[match.stop];
}
}
}
double
WPrime::maxMatch()
{
double max=0;
foreach(struct Match match, matches)
if (match.cost > max) max = match.cost;
return max;
}
//
// Associated Metrics
//
class MinWPrime : public RideMetric {
Q_DECLARE_TR_FUNCTIONS(MinWPrime);
public:
MinWPrime()
{
setSymbol("skiba_wprime_low");
setInternalName("Minimum W'bal");
}
void initialize() {
setName(tr("Minimum W' bal"));
setType(RideMetric::Low);
setMetricUnits(tr("Kj"));
setImperialUnits(tr("Kj"));
setPrecision(1);
}
void compute(const RideFile *r, const Zones *, int,
const HrZones *, int,
const QHash<QString,RideMetric*> &,
const Context *) {
WPrime w;
w.setRide((RideFile*)r);
setValue(w.minY/1000.00f);
}
bool canAggregate() { return false; }
RideMetric *clone() const { return new MinWPrime(*this); }
};
class MaxMatch : public RideMetric {
Q_DECLARE_TR_FUNCTIONS(MaxMatch);
public:
MaxMatch()
{
setSymbol("skiba_wprime_maxmatch");
setInternalName("Maximum W'bal Match");
}
void initialize() {
setName(tr("Maximum W'bal Match"));
setType(RideMetric::Peak);
setMetricUnits(tr("Kj"));
setImperialUnits(tr("Kj"));
setPrecision(1);
}
void compute(const RideFile *r, const Zones *, int,
const HrZones *, int,
const QHash<QString,RideMetric*> &,
const Context *) {
WPrime w;
w.setRide((RideFile*)r);
setValue(w.maxMatch()/1000.00f);
}
bool canAggregate() { return false; }
RideMetric *clone() const { return new MaxMatch(*this); }
};
class WPrimeTau : public RideMetric {
Q_DECLARE_TR_FUNCTIONS(WPrimeTau);
public:
WPrimeTau()
{
setSymbol("skiba_wprime_tau");
setInternalName("W'bal TAU");
}
void initialize() {
setName(tr("W'bal TAU"));
setType(RideMetric::Low);
setMetricUnits(tr(""));
setImperialUnits(tr(""));
setPrecision(0);
}
void compute(const RideFile *r, const Zones *, int,
const HrZones *, int,
const QHash<QString,RideMetric*> &,
const Context *) {
WPrime w;
w.setRide((RideFile*)r);
setValue(w.TAU);
}
bool canAggregate() { return false; }
RideMetric *clone() const { return new WPrimeTau(*this); }
};
class WPrimeExp : public RideMetric {
Q_DECLARE_TR_FUNCTIONS(WPrimeExp);
public:
WPrimeExp()
{
setSymbol("skiba_wprime_exp");
setInternalName("W' expenditure");
}
void initialize() {
setName(tr("W' expenditure"));
setType(RideMetric::Total);
setMetricUnits(tr("Kj"));
setImperialUnits(tr("Kj"));
setPrecision(1);
}
void compute(const RideFile *r, const Zones *, int,
const HrZones *, int,
const QHash<QString,RideMetric*> &,
const Context *) {
WPrime w;
w.setRide((RideFile*)r);
setValue(w.EXP/1000);
}
bool canAggregate() { return false; }
RideMetric *clone() const { return new WPrimeExp(*this); }
};
// add to catalogue
static bool addMetrics() {
RideMetricFactory::instance().addMetric(MinWPrime());
RideMetricFactory::instance().addMetric(MaxMatch());
RideMetricFactory::instance().addMetric(WPrimeTau());
RideMetricFactory::instance().addMetric(WPrimeExp());
return true;
}
static bool added = addMetrics();