Files
GoldenCheetah/src/FitRideFile.cpp
gcoco 85273e01b2 Document Global Message 104 - battery
But who knows what it actually has in it.
2014-07-03 15:28:32 -04:00

800 lines
30 KiB
C++

/*
* Copyright (c) 2007-2008 Sean C. Rhea (srhea@srhea.net)
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc., 51
* Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "FitRideFile.h"
#include <QSharedPointer>
#include <QMap>
#include <QSet>
#include <QtEndian>
#include <QDebug>
#include <QTime>
#include <stdio.h>
#include <stdint.h>
#include <limits>
#define RECORD_TYPE 20
static int fitFileReaderRegistered =
RideFileFactory::instance().registerReader(
"fit", "Garmin FIT", new FitFileReader());
static const QDateTime qbase_time(QDate(1989, 12, 31), QTime(0, 0, 0), Qt::UTC);
struct FitField {
int num;
int type; // FIT base_type
int size; // in bytes
};
struct FitDefinition {
int global_msg_num;
bool is_big_endian;
std::vector<FitField> fields;
};
/* FIT has uint32 as largest integer type. So qint64 is large enough to
* store all integer types - no matter if they're signed or not */
// this will need to change if float or other non-integer values are
// introduced into the file format
typedef qint64 fit_value_t;
#define NA_VALUE std::numeric_limits<fit_value_t>::max()
struct FitFileReaderState
{
QFile &file;
QStringList &errors;
RideFile *rideFile;
time_t start_time;
time_t last_time;
double last_distance;
QMap<int, FitDefinition> local_msg_types;
QSet<int> unknown_record_fields, unknown_global_msg_nums, unknown_base_type;
int interval;
int calibration;
int devices;
bool stopped;
int last_event_type;
int last_event;
int last_msg_type;
FitFileReaderState(QFile &file, QStringList &errors) :
file(file), errors(errors), rideFile(NULL), start_time(0),
last_time(0), last_distance(0.00f), interval(0), calibration(0), devices(0), stopped(true),
last_event_type(-1), last_event(-1), last_msg_type(-1)
{
}
struct TruncatedRead {};
void read_unknown( int size, int *count = NULL ){
char c[size+1];
if (file.read(c, size ) != size)
throw TruncatedRead();
if (count)
(*count) += size;
}
fit_value_t read_int8(int *count = NULL) {
qint8 i;
if (file.read(reinterpret_cast<char*>( &i), 1) != 1)
throw TruncatedRead();
if (count)
(*count) += 1;
return i == 0x7f ? NA_VALUE : i;
}
fit_value_t read_uint8(int *count = NULL) {
quint8 i;
if (file.read(reinterpret_cast<char*>( &i), 1) != 1)
throw TruncatedRead();
if (count)
(*count) += 1;
return i == 0xff ? NA_VALUE : i;
}
fit_value_t read_uint8z(int *count = NULL) {
quint8 i;
if (file.read(reinterpret_cast<char*>( &i), 1) != 1)
throw TruncatedRead();
if (count)
(*count) += 1;
return i == 0x00 ? NA_VALUE : i;
}
fit_value_t read_int16(bool is_big_endian, int *count = NULL) {
qint16 i;
if (file.read(reinterpret_cast<char*>(&i), 2) != 2)
throw TruncatedRead();
if (count)
(*count) += 2;
i = is_big_endian
? qFromBigEndian<qint16>( i )
: qFromLittleEndian<qint16>( i );
return i == 0x7fff ? NA_VALUE : i;
}
fit_value_t read_uint16(bool is_big_endian, int *count = NULL) {
quint16 i;
if (file.read(reinterpret_cast<char*>(&i), 2) != 2)
throw TruncatedRead();
if (count)
(*count) += 2;
i = is_big_endian
? qFromBigEndian<quint16>( i )
: qFromLittleEndian<quint16>( i );
return i == 0xffff ? NA_VALUE : i;
}
fit_value_t read_uint16z(bool is_big_endian, int *count = NULL) {
quint16 i;
if (file.read(reinterpret_cast<char*>(&i), 2) != 2)
throw TruncatedRead();
if (count)
(*count) += 2;
i = is_big_endian
? qFromBigEndian<quint16>( i )
: qFromLittleEndian<quint16>( i );
return i == 0x0000 ? NA_VALUE : i;
}
fit_value_t read_int32(bool is_big_endian, int *count = NULL) {
qint32 i;
if (file.read(reinterpret_cast<char*>(&i), 4) != 4)
throw TruncatedRead();
if (count)
(*count) += 4;
i = is_big_endian
? qFromBigEndian<qint32>( i )
: qFromLittleEndian<qint32>( i );
return i == 0x7fffffff ? NA_VALUE : i;
}
fit_value_t read_uint32(bool is_big_endian, int *count = NULL) {
quint32 i;
if (file.read(reinterpret_cast<char*>(&i), 4) != 4)
throw TruncatedRead();
if (count)
(*count) += 4;
i = is_big_endian
? qFromBigEndian<quint32>( i )
: qFromLittleEndian<quint32>( i );
return i == 0xffffffff ? NA_VALUE : i;
}
fit_value_t read_uint32z(bool is_big_endian, int *count = NULL) {
quint32 i;
if (file.read(reinterpret_cast<char*>(&i), 4) != 4)
throw TruncatedRead();
if (count)
(*count) += 4;
i = is_big_endian
? qFromBigEndian<quint32>( i )
: qFromLittleEndian<quint32>( i );
return i == 0x00000000 ? NA_VALUE : i;
}
void decodeFileId(const FitDefinition &def, int, const std::vector<fit_value_t> values) {
int i = 0;
int manu = -1, prod = -1;
foreach(const FitField &field, def.fields) {
fit_value_t value = values[i++];
if( value == NA_VALUE )
continue;
switch (field.num) {
case 1: manu = value; break;
case 2: prod = value; break;
default: ; // do nothing
}
}
if (manu == 1) {
switch (prod) {
case 717: rideFile->setDeviceType("Garmin FR405"); break;
case 782: rideFile->setDeviceType("Garmin FR50"); break;
case 988: rideFile->setDeviceType("Garmin FR60"); break;
case 1018: rideFile->setDeviceType("Garmin FR310XT"); break;
case 1036: rideFile->setDeviceType("Garmin Edge 500"); break;
case 1124: rideFile->setDeviceType("Garmin FR110"); break;
case 1169: rideFile->setDeviceType("Garmin Edge 800"); break;
case 1325: rideFile->setDeviceType("Garmin Edge 200"); break;
case 1328: rideFile->setDeviceType("Garmin FR910XT"); break;
case 1561: rideFile->setDeviceType("Garmin Edge 510"); break;
case 1567: rideFile->setDeviceType("Garmin Edge 810"); break;
case 1836: rideFile->setDeviceType("Garmin Edge 1000"); break;
case 20119: rideFile->setDeviceType("Garmin Training Center"); break;
case 65534: rideFile->setDeviceType("Garmin Connect Website"); break;
default: rideFile->setDeviceType(QString("Garmin %1").arg(prod));
}
}
else if (manu == 38) {
switch (prod) {
case 1: rideFile->setDeviceType("o_synce navi2coach"); break;
default: rideFile->setDeviceType(QString("o_synce %1").arg(prod));
}
}
else {
rideFile->setDeviceType(QString("Unknown FIT Device %1:%2").arg(manu).arg(prod));
}
rideFile->setFileFormat("FIT (*.fit)");
}
void decodeSession(const FitDefinition &def, int, const std::vector<fit_value_t> values) {
int i = 0;
foreach(const FitField &field, def.fields) {
fit_value_t value = values[i++];
if( value == NA_VALUE )
continue;
printf("decodeSession field %d: %d bytes, num %d, type %d\n", i, field.size, field.num, field.type );
}
}
void decodeDeviceInfo(const FitDefinition &def, int, const std::vector<fit_value_t> values) {
int i = 0;
foreach(const FitField &field, def.fields) {
fit_value_t value = values[i++];
if( value == NA_VALUE )
continue;
printf("decodeDeviceInfo field %d: %d bytes, num %d, type %d\n", i, field.size, field.num, field.type );
}
}
void decodeEvent(const FitDefinition &def, int, const std::vector<fit_value_t> values) {
int time = -1;
int event = -1;
int event_type = -1;
qint16 data16 = -1;
int i = 0;
foreach(const FitField &field, def.fields) {
fit_value_t value = values[i++];
if( value == NA_VALUE )
continue;
switch (field.num) {
case 253: // timestamp field (s)
time = value + qbase_time.toTime_t();
break;
case 0: // event field
event = value; break;
case 1: // event_type field
event_type = value; break;
case 2: // data16 field
data16 = value; break;
default: ; // do nothing
}
}
if (event == 0) { // Timer event
switch (event_type) {
case 0: // start
stopped = false;
break;
case 1: // stop
stopped = true;
break;
case 2: // consecutive_depreciated
case 3: // marker
break;
case 4: // stop all
stopped = true;
break;
case 5: // begin_depreciated
case 6: // end_depreciated
case 7: // end_all_depreciated
case 8: // stop_disable
stopped = true;
break;
case 9: // stop_disable_all
stopped = true;
break;
default:
errors << QString("Unknown timer event type %1").arg(event_type);
}
}
else if (event == 36) { // Calibration event
int secs = (start_time==0?0:time-start_time);
switch (event_type) {
case 3: // marker
++calibration;
rideFile->addCalibration(secs, data16, QString("Calibration %1 (%2)").arg(calibration).arg(data16));
//qDebug() << "marker" << secs << data16;
break;
default:
errors << QString("Unknown calibration event type %1").arg(event_type);
break;
}
}
// printf("event type %d\n", event_type);
last_event = event;
last_event_type = event_type;
}
void decodeLap(const FitDefinition &def, int time_offset, const std::vector<fit_value_t> values) {
time_t time = 0;
if (time_offset > 0)
time = last_time + time_offset;
else
time = last_time;
int i = 0;
time_t this_start_time = 0;
++interval;
foreach(const FitField &field, def.fields) {
fit_value_t value = values[i++];
if( value == NA_VALUE )
continue;
switch (field.num) {
case 253: time = value + qbase_time.toTime_t(); break;
case 2: this_start_time = value + qbase_time.toTime_t(); break;
default: ; // ignore it
}
}
if (this_start_time == 0 || this_start_time-start_time < 0) {
//errors << QString("lap %1 has invalid start time").arg(interval);
this_start_time = start_time; // time was corrected after lap start
if (time == 0 || time-start_time < 0) {
errors << QString("lap %1 is ignored (invalid end time)").arg(interval);
return;
}
}
if (rideFile->dataPoints().count()) // no samples means no laps..
rideFile->addInterval(this_start_time - start_time, time - start_time, QString(QObject::tr("Lap %1")).arg(interval));
}
void decodeRecord(const FitDefinition &def, int time_offset, const std::vector<fit_value_t> values) {
time_t time = 0;
if (time_offset > 0)
time = last_time + time_offset;
double alt = 0, cad = 0, km = 0, hr = 0, lat = 0, lng = 0, badgps = 0, lrbalance = 0;
double kph = 0, temperature = RideFile::NoTemp, watts = 0, slope = 0;
double leftTorqueEff = 0, rightTorqueEff = 0, leftPedalSmooth = 0, rightPedalSmooth = 0;
double smO2 = 0, tHb = 0;
fit_value_t lati = NA_VALUE, lngi = NA_VALUE;
int i = 0;
foreach(const FitField &field, def.fields) {
fit_value_t value = values[i++];
if( value == NA_VALUE )
continue;
switch (field.num) {
case 253: // TIMESTAMP
time = value + qbase_time.toTime_t();
// Time MUST NOT go backwards
// You canny break the laws of physics, Jim
if (time < last_time)
time = last_time;
break;
case 0: // POSITION_LAT
lati = value;
break;
case 1: // POSITION_LONG
lngi = value;
break;
case 2: // ALTITUDE
alt = value / 5.0 - 500.0;
break;
case 3: // HEART_RATE
hr = value;
break;
case 4: // CADENCE
cad = value;
break;
case 5: // DISTANCE
km = value / 100000.0;
break;
case 6: // SPEED
kph = value * 3.6 / 1000.0;
break;
case 7: // POWER
watts = value;
break;
case 8: break; // packed speed/dist
case 9: // GRADE
slope = value / 100.0;
break;
case 10: //resistance = value;
break;
case 11: //time_from_course = value / 1000.0;
break;
case 12: break; // "cycle_length"
case 13: // TEMPERATURE
temperature = value;
break;
case 29: // ACCUMULATED_POWER
break;
case 30: //LEFT_RIGHT_BALANCE
lrbalance = (value & 0x80 ? 100 - (value & 0x7F) : value & 0x7F);
break;
case 31: // GPS Accuracy
break;
case 43: // LEFT_TORQUE_EFFECTIVENESS
leftTorqueEff = value / 2.0;
//qDebug() << "LEFT_TORQUE_EFFECTIVENESS" << leftTorqueEff;
break;
case 44: // RIGHT_TORQUE_EFFECTIVENESS
rightTorqueEff = value / 2.0;
//qDebug() << "RIGHT_TORQUE_EFFECTIVENESS" << rightTorqueEff;
break;
case 45: // LEFT_PEDAL_SMOOTHNESS
leftPedalSmooth = value / 2.0;
//qDebug() << "LEFT_PEDAL_SMOOTHNESS" << leftPedalSmooth;
break;
case 46: // RIGHT_PEDAL_SMOOTHNESS
rightPedalSmooth = value / 2.0;
//qDebug() << "RIGHT_PEDAL_SMOOTHNESS" << rightPedalSmooth;
break;
case 47: // COMBINED_PEDAL_SMOOTHNES
//qDebug() << "COMBINED_PEDAL_SMOOTHNES" << value;
break;
default: unknown_record_fields.insert(field.num);
}
}
if (time == last_time)
return; // Sketchy, but some FIT files do this.
if (stopped) {
// As it turns out, this happens all the time in some FIT files.
// Since we don't really understand the meaning, don't make noise.
/*
errors << QString("At %1 seconds, time is stopped, but got record "
"anyway. Ignoring it. Last event type was "
"%2 for event %3.").arg(time-start_time).arg(last_event_type).arg(last_event);
return;
*/
}
if (lati != NA_VALUE && lngi != NA_VALUE) {
lat = lati * 180.0 / 0x7fffffff;
lng = lngi * 180.0 / 0x7fffffff;
} else
{
// If lat/lng are missng, set to 0/0 and fill point from last point as 0/0)
lat = 0;
lng = 0;
badgps = 1;
}
if (start_time == 0) {
start_time = time - 1; // recording interval?
QDateTime t;
t.setTime_t(start_time);
rideFile->setStartTime(t);
}
//printf( "point time=%d lat=%.2lf lon=%.2lf alt=%.1lf hr=%.0lf "
// "cad=%.0lf km=%.1lf kph=%.1lf watts=%.0lf grade=%.1lf "
// "resist=%.1lf off=%.1lf temp=%.1lf\n",
// time, lat, lng, alt, hr,
// cad, km, kph, watts, grade,
// resistance, time_from_course, temperature );
double secs = time - start_time;
double nm = 0;
double headwind = 0.0;
int interval = 0;
if ((last_msg_type == RECORD_TYPE) && (last_time != 0) && (time > last_time + 1)) {
// Evil smart recording. Linearly interpolate missing points.
RideFilePoint *prevPoint = rideFile->dataPoints().back();
int deltaSecs = (int) (secs - prevPoint->secs);
//assert(deltaSecs == secs - prevPoint->secs); // no fractional part -- don't CRASH FFS, be graceful
// This is only true if the previous record was of type record:
//assert(deltaSecs == time - last_time); -- don't CRASH FFS, be graceful
// If the last lat/lng was missing (0/0) then all points up to lat/lng are marked as 0/0.
if (prevPoint->lat == 0 && prevPoint->lon == 0 ) {
badgps = 1;
}
double deltaCad = cad - prevPoint->cad;
double deltaHr = hr - prevPoint->hr;
double deltaDist = km - prevPoint->km;
if (km < 0.00001) deltaDist = 0.000f; // effectively zero distance
double deltaSpeed = kph - prevPoint->kph;
double deltaTorque = nm - prevPoint->nm;
double deltaPower = watts - prevPoint->watts;
double deltaAlt = alt - prevPoint->alt;
double deltaLon = lng - prevPoint->lon;
double deltaLat = lat - prevPoint->lat;
double deltaHeadwind = headwind - prevPoint->headwind;
double deltaSlope = slope - prevPoint->slope;
double deltaLeftRightBalance = lrbalance - prevPoint->lrbalance;
double deltaLeftTE = leftTorqueEff - prevPoint->lte;
double deltaRightTE = rightTorqueEff - prevPoint->rte;
double deltaLeftPS = leftPedalSmooth - prevPoint->lps;
double deltaRightPS = rightPedalSmooth - prevPoint->rps;
double deltaSmO2 = smO2 - prevPoint->smo2;
double deltaTHb = tHb - prevPoint->thb;
// only smooth for less than 30 minutes
// we don't want to crash / stall on bad
// or corrupt files
if (deltaSecs > 0 && deltaSecs < (60*30)) {
for (int i = 1; i < deltaSecs; i++) {
double weight = 1.0 * i / deltaSecs;
rideFile->appendPoint(
prevPoint->secs + (deltaSecs * weight),
prevPoint->cad + (deltaCad * weight),
prevPoint->hr + (deltaHr * weight),
prevPoint->km + (deltaDist * weight),
prevPoint->kph + (deltaSpeed * weight),
prevPoint->nm + (deltaTorque * weight),
prevPoint->watts + (deltaPower * weight),
prevPoint->alt + (deltaAlt * weight),
(badgps == 1) ? 0 : prevPoint->lon + (deltaLon * weight),
(badgps == 1) ? 0 : prevPoint->lat + (deltaLat * weight),
prevPoint->headwind + (deltaHeadwind * weight),
prevPoint->slope + (deltaSlope * weight),
temperature,
prevPoint->lrbalance + (deltaLeftRightBalance * weight),
prevPoint->lte + (deltaLeftTE * weight),
prevPoint->rte + (deltaRightTE * weight),
prevPoint->lps + (deltaLeftPS * weight),
prevPoint->rps + (deltaRightPS * weight),
prevPoint->smo2 + (deltaSmO2 * weight),
prevPoint->thb + (deltaTHb * weight),
interval);
}
prevPoint = rideFile->dataPoints().back();
}
}
if (km < 0.00001f) km = last_distance;
rideFile->appendPoint(secs, cad, hr, km, kph, nm, watts, alt, lng, lat, headwind, slope, temperature,
lrbalance, leftTorqueEff, rightTorqueEff, leftPedalSmooth, rightPedalSmooth,
smO2, tHb, interval);
last_time = time;
last_distance = km;
}
int read_record(bool &stop, QStringList &errors) {
stop = false;
int count = 0;
int header_byte = read_uint8(&count);
if (!(header_byte & 0x80) && (header_byte & 0x40)) {
// Definition record
int local_msg_type = header_byte & 0xf;
local_msg_types.insert(local_msg_type, FitDefinition());
FitDefinition &def = local_msg_types[local_msg_type];
int reserved = read_uint8(&count); (void) reserved; // unused
def.is_big_endian = read_uint8(&count);
def.global_msg_num = read_uint16(def.is_big_endian, &count);
int num_fields = read_uint8(&count);
//printf("definition: local type=%d global=%d arch=%d fields=%d\n",
// local_msg_type, def.global_msg_num, def.is_big_endian,
// num_fields );
for (int i = 0; i < num_fields; ++i) {
def.fields.push_back(FitField());
FitField &field = def.fields.back();
field.num = read_uint8(&count);
field.size = read_uint8(&count);
int base_type = read_uint8(&count);
field.type = base_type & 0x1f;
//printf(" field %d: %d bytes, num %d, type %d\n",
// i, field.size, field.num, field.type );
}
}
else {
// Data record
int local_msg_type = 0;
int time_offset = 0;
if (header_byte & 0x80) {
// compressed time record
local_msg_type = (header_byte >> 5) & 0x3;
time_offset = header_byte & 0x1f;
}
else {
local_msg_type = header_byte & 0xf;
}
if (!local_msg_types.contains(local_msg_type)) {
errors << QString("local type %1 without previous definition").arg(local_msg_type);
stop = true;
return count;
}
const FitDefinition &def = local_msg_types[local_msg_type];
//printf( "message local=%d global=%d\n", local_msg_type,
// def.global_msg_num );
std::vector<fit_value_t> values;
foreach(const FitField &field, def.fields) {
fit_value_t v;
int size;
switch (field.type) {
case 0: v = read_uint8(&count); size = 1; break;
case 1: v = read_int8(&count); size = 1; break;
case 2: v = read_uint8(&count); size = 1; break;
case 3: v = read_int16(def.is_big_endian, &count); size = 2; break;
case 4: v = read_uint16(def.is_big_endian, &count); size = 2; break;
case 5: v = read_int32(def.is_big_endian, &count); size = 4; break;
case 6: v = read_uint32(def.is_big_endian, &count); size = 4; break;
//case 7: // String
//case 8: // FLOAT32
//case 9: // FLOAT64
case 10: v = read_uint8z(&count); size = 1; break;
case 11: v = read_uint16z(def.is_big_endian, &count); size = 2; break;
case 12: v = read_uint32z(def.is_big_endian, &count); size = 4; break;
//case 13: // BYTE
// we may need to add support for float, string + byte base types here
default:
read_unknown( field.size, &count );
v = NA_VALUE;
unknown_base_type.insert(field.num);
size = field.size;
}
// Quick fix : we need to support multivalues
if (size < field.size)
read_unknown( field.size-size, &count );
values.push_back(v);
//printf( " field: type=%d num=%d value=%lld\n",
// field.type, field.num, v );
}
// Most of the record types in the FIT format aren't actually all
// that useful. FileId, Lap, and Record clearly are. The one
// other one that might be useful is DeviceInfo, but it doesn't
// seem to be filled in properly. Sean's Cinqo, for example,
// shows up as manufacturer #65535, even though it should be #7.
switch (def.global_msg_num) {
case 0: decodeFileId(def, time_offset, values); break;
case 19: decodeLap(def, time_offset, values); break;
case RECORD_TYPE: decodeRecord(def, time_offset, values); break;
case 21: decodeEvent(def, time_offset, values); break;
case 23: //decodeDeviceInfo(def, time_offset, values); break; /* device info */
case 18: //decodeSession(def, time_offset, values); break; /* session */
case 22: /* undocumented */
case 72: /* undocumented - new for garmin 800*/
case 34: /* activity */
case 49: /* file creator */
case 79: /* unknown */
case 104: /* battery */
break;
default:
unknown_global_msg_nums.insert(def.global_msg_num);
}
last_msg_type = def.global_msg_num;
}
return count;
}
RideFile * run() {
rideFile = new RideFile;
rideFile->setDeviceType("Garmin FIT");
rideFile->setRecIntSecs(1.0); // this is a terrible assumption!
if (!file.open(QIODevice::ReadOnly)) {
delete rideFile;
return NULL;
}
int data_size = 0;
try {
// read the header
int header_size = read_uint8();
if (header_size != 12 && header_size != 14) {
errors << QString("bad header size: %1").arg(header_size);
file.close();
delete rideFile;
return NULL;
}
int protocol_version = read_uint8();
(void) protocol_version;
// if the header size is 14 we have profile minor then profile major
// version. We still don't do anything with this information
int profile_version = read_uint16(false); // always littleEndian
(void) profile_version; // not sure what to do with this
data_size = read_uint32(false); // always littleEndian
char fit_str[5];
if (file.read(fit_str, 4) != 4) {
errors << "truncated header";
file.close();
delete rideFile;
return NULL;
}
fit_str[4] = '\0';
if (strcmp(fit_str, ".FIT") != 0) {
errors << QString("bad header, expected \".FIT\" but got \"%1\"").arg(fit_str);
file.close();
delete rideFile;
return NULL;
}
// read the rest of the header
if (header_size == 14) read_uint16(false);
} catch (TruncatedRead &e) {
errors << "truncated file body";
return NULL;
}
int bytes_read = 0;
bool stop = false;
bool truncated = false;
try {
while (!stop && (bytes_read < data_size))
bytes_read += read_record(stop, errors);
}
catch (TruncatedRead &e) {
errors << "truncated file body";
//file.close();
//delete rideFile;
//return NULL;
truncated = true;
}
if (stop) {
file.close();
delete rideFile;
return NULL;
}
else {
if (!truncated) {
int crc = read_uint16( false ); // always littleEndian
(void) crc;
}
foreach(int num, unknown_global_msg_nums)
qDebug() << QString("FitRideFile: unknown global message number %1; ignoring it").arg(num);
foreach(int num, unknown_record_fields)
qDebug() << QString("FitRideFile: unknown record field %1; ignoring it").arg(num);
foreach(int num, unknown_base_type)
qDebug() << QString("FitRideFile: unknown base type %1; skipped").arg(num);
file.close();
return rideFile;
}
}
};
RideFile *FitFileReader::openRideFile(QFile &file, QStringList &errors, QList<RideFile*>*) const
{
QSharedPointer<FitFileReaderState> state(new FitFileReaderState(file, errors));
return state->run();
}
// vi:expandtab tabstop=4 shiftwidth=4