Files
GoldenCheetah/src/Metrics/Coggan.cpp

385 lines
12 KiB
C++

/*
* Copyright (c) 2010 Mark Liversedge (liversedge@gmail.com)
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc., 51
* Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "Context.h"
#include "RideMetric.h"
#include "RideItem.h"
#include "Zones.h"
#include "Settings.h"
#include "Athlete.h"
#include "Specification.h"
#include "Units.h"
#include <cmath>
#include <assert.h>
#include <QApplication>
class NP : public RideMetric {
Q_DECLARE_TR_FUNCTIONS(NP)
double np;
double secs;
public:
NP() : np(0.0), secs(0.0)
{
setSymbol("coggan_np");
setInternalName("NP");
}
void initialize() {
setName("NP");
setType(RideMetric::Average);
setMetricUnits("watts");
setImperialUnits("watts");
setPrecision(0);
setDescription(tr("Normalized Power is an estimate of the power that you could have maintained for the same physiological 'cost' if your power output had been perfectly constant."));
}
void compute(RideItem *item, Specification spec, const QHash<QString,RideMetric*> &) {
// no ride or no samples
if (spec.isEmpty(item->ride()) || item->ride()->recIntSecs() == 0) {
setValue(RideFile::NIL);
setCount(0);
return;
}
int rollingwindowsize = 30 / item->ride()->recIntSecs();
double total = 0;
int count = 0;
// no point doing a rolling average if the
// sample rate is greater than the rolling average
// window!!
if (rollingwindowsize > 1) {
QVector<double> rolling(rollingwindowsize);
int index = 0;
double sum = 0;
// loop over the data and convert to a rolling
// average for the given windowsize
RideFileIterator it(item->ride(), spec);
while (it.hasNext()) {
struct RideFilePoint *point = it.next();
sum += point->watts;
sum -= rolling[index];
rolling[index] = point->watts;
total += pow(sum/rollingwindowsize,4); // raise rolling average to 4th power
count ++;
// move index on/round
index = (index >= rollingwindowsize-1) ? 0 : index+1;
}
}
if (count) {
np = pow(total / (count), 0.25);
secs = count * item->ride()->recIntSecs();
} else {
np = secs = 0;
}
setValue(np);
setCount(secs);
}
bool isRelevantForRide(const RideItem*ride) const { return ride->present.contains("P") || (!ride->isRun && !ride->isSwim); }
RideMetric *clone() const { return new NP(*this); }
};
class VI : public RideMetric {
Q_DECLARE_TR_FUNCTIONS(VI)
double vi;
double secs;
public:
VI() : vi(0.0), secs(0.0)
{
setSymbol("coggam_variability_index");
setInternalName("VI");
}
void initialize() {
setName("VI");
setType(RideMetric::Average);
setPrecision(3);
setDescription(tr("Variability Index is the ratio between NP and Average Power."));
}
void compute(RideItem *, Specification, const QHash<QString,RideMetric*> &deps) {
assert(deps.contains("coggan_np"));
assert(deps.contains("average_power"));
NP *np = dynamic_cast<NP*>(deps.value("coggan_np"));
assert(np);
RideMetric *ap = dynamic_cast<RideMetric*>(deps.value("average_power"));
assert(ap);
vi = np->value(true) / ap->value(true);
secs = np->count();
setValue(vi);
setCount(secs);
}
bool isRelevantForRide(const RideItem*ride) const { return ride->present.contains("P") || (!ride->isRun && !ride->isSwim); }
RideMetric *clone() const { return new VI(*this); }
};
class IntensityFactor : public RideMetric {
Q_DECLARE_TR_FUNCTIONS(IntensityFactor)
double rif;
double secs;
public:
IntensityFactor() : rif(0.0), secs(0.0)
{
setSymbol("coggan_if");
setInternalName("IF");
}
void initialize() {
setName("IF");
setType(RideMetric::Average);
setPrecision(3);
setDescription(tr("Intensity Factor is the ratio between NP and the Functional Threshold Power (FTP) configured in Power Zones."));
}
void compute(RideItem *item, Specification, const QHash<QString,RideMetric*> &deps) {
// no zones
if (!item->context->athlete->zones(item->isRun) || item->zoneRange < 0) {
setValue(RideFile::NIL);
setCount(0);
return;
}
assert(deps.contains("coggan_np"));
NP *np = dynamic_cast<NP*>(deps.value("coggan_np"));
assert(np);
int ftp = item->getText("FTP","0").toInt();
bool useCPForFTP = (appsettings->cvalue(item->context->athlete->cyclist, item->context->athlete->zones(item->isRun)->useCPforFTPSetting(), 0).toInt() == 0);
if (useCPForFTP) {
int cp = item->getText("CP","0").toInt();
if (cp == 0)
cp = item->context->athlete->zones(item->isRun)->getCP(item->zoneRange);
ftp = cp;
}
rif = np->value(true) / (ftp ? ftp : item->context->athlete->zones(item->isRun)->getFTP(item->zoneRange));
secs = np->count();
setValue(rif);
setCount(secs);
}
bool isRelevantForRide(const RideItem*ride) const { return ride->present.contains("P") || (!ride->isRun && !ride->isSwim); }
RideMetric *clone() const { return new IntensityFactor(*this); }
};
class TSS : public RideMetric {
Q_DECLARE_TR_FUNCTIONS(TSS)
double score;
public:
TSS() : score(0.0)
{
setSymbol("coggan_tss");
setInternalName("TSS");
}
void initialize() {
setName("TSS");
setType(RideMetric::Total);
setDescription(tr("Training Stress Score takes into account both the intensity and the duration of the training session, it can be computed as 100 * hours * IF^2"));
}
void compute(RideItem *item, Specification, const QHash<QString,RideMetric*> &deps) {
// run, swim or no zones
if (item->isSwim || item->isRun ||
!item->context->athlete->zones(item->isRun) || item->zoneRange < 0) {
setValue(RideFile::NIL);
setCount(0);
return;
}
assert(deps.contains("coggan_np"));
assert(deps.contains("coggan_if"));
NP *np = dynamic_cast<NP*>(deps.value("coggan_np"));
RideMetric *rif = deps.value("coggan_if");
assert(rif);
double normWork = np->value(true) * np->count();
double rawTSS = normWork * rif->value(true);
int ftp = item->getText("FTP","0").toInt();
bool useCPForFTP = (appsettings->cvalue(item->context->athlete->cyclist, item->context->athlete->zones(item->isRun)->useCPforFTPSetting(), 0).toInt() == 0);
if (useCPForFTP) {
int cp = item->getText("CP","0").toInt();
if (cp == 0)
cp = item->context->athlete->zones(item->isRun)->getCP(item->zoneRange);
ftp = cp;
}
double workInAnHourAtCP = (ftp ? ftp : item->context->athlete->zones(item->isRun)->getFTP(item->zoneRange)) * 3600;
score = rawTSS / workInAnHourAtCP * 100.0;
setValue(score);
}
bool isRelevantForRide(const RideItem*ride) const { return (!ride->isRun && !ride->isSwim); }
RideMetric *clone() const { return new TSS(*this); }
};
class TSSPerHour : public RideMetric {
Q_DECLARE_TR_FUNCTIONS(TSSPerHour)
double points;
double hours;
public:
TSSPerHour() : points(0.0), hours(0.0)
{
setSymbol("coggan_tssperhour");
setInternalName("TSS per hour");
}
void initialize() {
setName(tr("TSS per hour"));
setType(RideMetric::Average);
setPrecision(0);
setDescription(tr("Training Stress Score divided by Duration in hours"));
}
void compute(RideItem *item, Specification, const QHash<QString,RideMetric*> &deps) {
// doesn't apply to swims or runs
if (item->isSwim || item->isRun) {
setValue(RideFile::NIL);
setCount(0);
return;
}
// tss
assert(deps.contains("coggan_tss"));
TSS *tss = dynamic_cast<TSS*>(deps.value("coggan_tss"));
assert(tss);
// duration
assert(deps.contains("workout_time"));
RideMetric *duration = deps.value("workout_time");
assert(duration);
points = tss->value(true);
hours = duration->value(true) / 3600;
// set
if (hours) setValue(points/hours);
else setValue(0);
setCount(hours);
}
bool isRelevantForRide(const RideItem*ride) const { return (!ride->isRun && !ride->isSwim); }
RideMetric *clone() const { return new TSSPerHour(*this); }
};
/* Running update based on: http://www.joefrielsblog.com/2014/11/the-efficiency-factor-in-running.html */
class EfficiencyFactor : public RideMetric {
Q_DECLARE_TR_FUNCTIONS(EfficiencyFactor)
double ef;
public:
EfficiencyFactor() : ef(0.0)
{
setSymbol("friel_efficiency_factor");
setInternalName("Efficiency Factor");
}
void initialize() {
setName(tr("Efficiency Factor"));
setType(RideMetric::Average);
setMetricUnits(tr(""));
setImperialUnits(tr(""));
setPrecision(3);
setDescription(tr("The ratio between NP and Average HR for Cycling and xPace (in yd/min) and Average HR for Running"));
}
void compute(RideItem *item, Specification, const QHash<QString,RideMetric*> &deps) {
assert(deps.contains("coggan_np"));
assert(deps.contains("xPace"));
assert(deps.contains("average_hr"));
if (item->isRun && deps.value("coggan_np")->value() == 0) {
RideMetric *xPace = dynamic_cast<RideMetric*>(deps.value("xPace"));
assert(xPace);
ef = xPace->value(true) > 0 ? ((1000.0/METERS_PER_YARD) / xPace->value(true)) : 0.0;
} else {
NP *np = dynamic_cast<NP*>(deps.value("coggan_np"));
assert(np);
ef = np->value(true);
}
RideMetric *ah = dynamic_cast<RideMetric*>(deps.value("average_hr"));
assert(ah);
ef = ah->value(true) > 0 ? ef / ah->value(true) : 0.0;
setValue(ef);
}
bool isRelevantForRide(const RideItem*ride) const { return ride->present.contains("H") && (ride->present.contains("P") || (ride->isRun && ride->present.contains("S"))); }
RideMetric *clone() const { return new EfficiencyFactor(*this); }
};
static bool addAllCoggan() {
RideMetricFactory::instance().addMetric(NP());
QVector<QString> deps;
deps.append("coggan_np");
RideMetricFactory::instance().addMetric(IntensityFactor(), &deps);
deps.append("coggan_if");
RideMetricFactory::instance().addMetric(TSS(), &deps);
deps.clear();
deps.append("coggan_np");
deps.append("average_power");
RideMetricFactory::instance().addMetric(VI(), &deps);
deps.clear();
deps.append("coggan_np");
deps.append("xPace");
deps.append("average_hr");
RideMetricFactory::instance().addMetric(EfficiencyFactor(), &deps);
deps.clear();
deps.append("coggan_tss");
deps.append("workout_time");
RideMetricFactory::instance().addMetric(TSSPerHour(), &deps);
return true;
}
static bool CogganAdded = addAllCoggan();