Files
GoldenCheetah/src/RideFileCache.cpp
Mark Liversedge 30c13fe973 Code Cleanup: RideFileCache remove mallocs
Mark Rage's superfast meanmax computer works like a charm but
uses stdlib malloc/free for memory allocation.
2013-02-21 13:07:00 +00:00

1120 lines
38 KiB
C++

/*
* Copyright (c) 2011 Mark Liversedge (liversedge@gmail.com)
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc., 51
* Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "RideFileCache.h"
#include "MainWindow.h"
#include "Zones.h"
#include "HrZones.h"
#include <math.h> // for pow()
#include <QDebug>
#include <QFileInfo>
#include <QMessageBox>
#include <QtAlgorithms> // for qStableSort
static const int maxcache = 25; // lets max out at 25 caches
// cache from ride
RideFileCache::RideFileCache(MainWindow *main, QString fileName, RideFile *passedride, bool check) :
main(main), rideFileName(fileName), ride(passedride)
{
// resize all the arrays to zero
wattsMeanMax.resize(0);
hrMeanMax.resize(0);
cadMeanMax.resize(0);
nmMeanMax.resize(0);
kphMeanMax.resize(0);
xPowerMeanMax.resize(0);
npMeanMax.resize(0);
vamMeanMax.resize(0);
wattsKgMeanMax.resize(0);
wattsDistribution.resize(0);
hrDistribution.resize(0);
cadDistribution.resize(0);
nmDistribution.resize(0);
kphDistribution.resize(0);
xPowerDistribution.resize(0);
npDistribution.resize(0);
wattsKgDistribution.resize(0);
// time in zone are fixed to 10 zone max
wattsTimeInZone.resize(10);
hrTimeInZone.resize(10);
// Get info for ride file and cache file
QFileInfo rideFileInfo(rideFileName);
cacheFileName = rideFileInfo.path() + "/" + rideFileInfo.baseName() + ".cpx";
QFileInfo cacheFileInfo(cacheFileName);
// is it up-to-date?
if (cacheFileInfo.exists() && rideFileInfo.lastModified() <= cacheFileInfo.lastModified() &&
cacheFileInfo.size() >= (int)sizeof(struct RideFileCacheHeader)) {
// we have a file, it is more recent than the ride file
// but is it the latest version?
RideFileCacheHeader head;
QFile cacheFile(cacheFileName);
if (cacheFile.open(QIODevice::ReadOnly) == true) {
// read the header
QDataStream inFile(&cacheFile);
inFile.readRawData((char *) &head, sizeof(head));
cacheFile.close();
// is it as recent as we are?
if (head.version == RideFileCacheVersion) {
// WE'RE GOOD
if (check == false) readCache(); // if check is false we aren't just checking
return;
}
}
}
// NEED TO UPDATE!!
// not up-to-date we need to refresh from the ridefile
if (ride) {
// we got passed the ride - so update from that
refreshCache();
} else {
// we need to open it to update since we were not passed one
QStringList errors;
QFile file(rideFileName);
ride = RideFileFactory::instance().openRideFile(main, file, errors);
if (ride) {
refreshCache();
delete ride;
}
ride = 0;
}
}
int
RideFileCache::decimalsFor(RideFile::SeriesType series)
{
switch (series) {
case RideFile::secs : return 0; break;
case RideFile::cad : return 0; break;
case RideFile::hr : return 0; break;
case RideFile::km : return 3; break;
case RideFile::kph : return 1; break;
case RideFile::nm : return 2; break;
case RideFile::watts : return 0; break;
case RideFile::xPower : return 0; break;
case RideFile::NP : return 0; break;
case RideFile::alt : return 1; break;
case RideFile::lon : return 6; break;
case RideFile::lat : return 6; break;
case RideFile::headwind : return 1; break;
case RideFile::slope : return 1; break;
case RideFile::temp : return 1; break;
case RideFile::interval : return 0; break;
case RideFile::vam : return 0; break;
case RideFile::wattsKg : return 2; break;
case RideFile::lrbalance : return 1; break;
case RideFile::none : break;
}
return 2; // default
}
//
// DATA ACCESS
//
QVector<QDate> &
RideFileCache::meanMaxDates(RideFile::SeriesType series)
{
switch (series) {
case RideFile::watts:
return wattsMeanMaxDate;
break;
case RideFile::cad:
return cadMeanMaxDate;
break;
case RideFile::hr:
return hrMeanMaxDate;
break;
case RideFile::nm:
return nmMeanMaxDate;
break;
case RideFile::kph:
return kphMeanMaxDate;
break;
case RideFile::xPower:
return xPowerMeanMaxDate;
break;
case RideFile::NP:
return npMeanMaxDate;
break;
case RideFile::vam:
return vamMeanMaxDate;
break;
case RideFile::wattsKg:
return wattsKgMeanMaxDate;
break;
default:
//? dunno give em power anyway
return wattsMeanMaxDate;
break;
}
}
QVector<double> &
RideFileCache::meanMaxArray(RideFile::SeriesType series)
{
switch (series) {
case RideFile::watts:
return wattsMeanMaxDouble;
break;
case RideFile::cad:
return cadMeanMaxDouble;
break;
case RideFile::hr:
return hrMeanMaxDouble;
break;
case RideFile::nm:
return nmMeanMaxDouble;
break;
case RideFile::kph:
return kphMeanMaxDouble;
break;
case RideFile::xPower:
return xPowerMeanMaxDouble;
break;
case RideFile::NP:
return npMeanMaxDouble;
break;
case RideFile::vam:
return vamMeanMaxDouble;
break;
case RideFile::wattsKg:
return wattsKgMeanMaxDouble;
break;
default:
//? dunno give em power anyway
return wattsMeanMaxDouble;
break;
}
}
QVector<double> &
RideFileCache::distributionArray(RideFile::SeriesType series)
{
switch (series) {
case RideFile::watts:
return wattsDistributionDouble;
break;
case RideFile::cad:
return cadDistributionDouble;
break;
case RideFile::hr:
return hrDistributionDouble;
break;
case RideFile::nm:
return nmDistributionDouble;
break;
case RideFile::kph:
return kphDistributionDouble;
break;
case RideFile::wattsKg:
return wattsKgDistributionDouble;
break;
default:
//? dunno give em power anyway
return wattsMeanMaxDouble;
break;
}
}
//
// COMPUTATION
//
void
RideFileCache::refreshCache()
{
static bool writeerror=false;
// update cache!
QFile cacheFile(cacheFileName);
if (cacheFile.open(QIODevice::WriteOnly) == true) {
// ok so we are going to be able to write this stuff
// so lets go recalculate it all
compute();
QDataStream outFile(&cacheFile);
// go write it out
serialize(&outFile);
// all done now, phew
cacheFile.close();
} else if (writeerror == false) {
// popup the first time...
writeerror = true;
QMessageBox err;
QString errMessage = QString("Cannot create cache file %1.").arg(cacheFileName);
err.setText(errMessage);
err.setIcon(QMessageBox::Warning);
err.exec();
return;
} else {
// send a console message instead...
qDebug()<<"cannot create cache file"<<cacheFileName;
}
}
// this function is a candidate for supporting
// threaded calculations, each of the computes
// in here could go in its own thread. Users
// with many cores would benefit enormously
void RideFileCache::RideFileCache::compute()
{
if (ride == NULL) {
return;
}
// all the mean maxes
MeanMaxComputer thread1(ride, wattsMeanMax, RideFile::watts); thread1.start();
MeanMaxComputer thread2(ride, hrMeanMax, RideFile::hr); thread2.start();
MeanMaxComputer thread3(ride, cadMeanMax, RideFile::cad); thread3.start();
MeanMaxComputer thread4(ride, nmMeanMax, RideFile::nm); thread4.start();
MeanMaxComputer thread5(ride, kphMeanMax, RideFile::kph); thread5.start();
MeanMaxComputer thread6(ride, xPowerMeanMax, RideFile::xPower); thread6.start();
MeanMaxComputer thread7(ride, npMeanMax, RideFile::NP); thread7.start();
MeanMaxComputer thread8(ride, vamMeanMax, RideFile::vam); thread8.start();
MeanMaxComputer thread9(ride, wattsKgMeanMax, RideFile::wattsKg); thread9.start();
// all the different distributions
computeDistribution(wattsDistribution, RideFile::watts);
computeDistribution(hrDistribution, RideFile::hr);
computeDistribution(cadDistribution, RideFile::cad);
computeDistribution(nmDistribution, RideFile::nm);
computeDistribution(kphDistribution, RideFile::kph);
computeDistribution(wattsKgDistribution, RideFile::wattsKg);
// wait for them threads
thread1.wait();
thread2.wait();
thread3.wait();
thread4.wait();
thread5.wait();
thread6.wait();
thread7.wait();
thread8.wait();
thread9.wait();
}
//----------------------------------------------------------------------
// Mark Rages' Algorithm for Fast Find of Mean-Max
//----------------------------------------------------------------------
/*
A Faster Mean-Max Algorithm
Premises:
1 - maximum average power for a given interval occurs at maximum
energy for the interval, because the interval time is fixed;
2 - the energy in an interval enclosing a smaller interval will
always be equal or greater than an interval;
3 - finding maximum of means is a search algorithm, so biggest
gains are found in reducing the search space as quickly as
possible.
Algorithm
note: I find it easier to reason with concrete numbers, so I will
describe the algorithm in terms of power and 60 second max-mean:
To find the maximum average power for one minute:
1 - integrate the watts over the entire ride to get accumulated
energy in joules. This is a monotonic function (assuming watts
are positive). The final value is the energy for the whole
ride. Once this is done, the energy for any section can be
found with a single subtraction.
2 - divide the energy into overlapping two-minute sections.
Section one = 0:00 -> 2:00, section two = 1:00 -> 3:00, etc.
Example: Find 60s MM in 5-minute file
+----------+----------+----------+----------+----------+
| minute 1 | minute 2 | minute 3 | minute 4 | minute 5 |
+----------+----------+----------+----------+----------+
| |_MEAN_MAX_| |
+---------------------+---------------------+----------+
| segment 1 | segment 3 |
+----------+----------+----------+----------+----------+
| segment 2 | segment 4 |
+---------------------+---------------------+
So no matter where the MEAN_MAX segment is located in time, it
will be wholly contained in one segment.
In practice, it is a little faster to make the windows smaller
and overlap more:
+----------+----------+----------+----------+----------+
| minute 1 | minute 2 | minute 3 | minute 4 | minute 5 |
+----------+----------+----------+----------+----------+
| |_MEAN_MAX_| |
+-------------+----------------------------------------+
| segment 1 |
+--+----------+--+
| segment 2 |
+--+----------+--+
| segment 3 |
+--+----------+--+
| segment 4 |
+--+----------+--+
| segment 5 |
+--+----------+--+
| segment 6 |
+--+----------+--+
| segment 7 |
+--+----------+--+
| segment 8 |
+--+----------+--+
| segment 9 |
+-------------+
... etc.
( This is because whenever the actual mean max energy is
greater than a segment energy, we can skip the detail
comparison within that segment altogether. The exact
tradeoff for optimum performance depends on the distribution
of the data. It's a pretty shallow curve. Values in the 1
minute to 1.5 minute range seem to work pretty well. )
3 - for each two minute section, subtract the accumulated energy at
the end of the section from the accumulated energy at the
beginning of the section. That gives the energy for that section.
4 - in the first section, go second-by-second to find the maximum
60-second energy. This is our candidate for 60-second energy
5 - go down the sorted list of sections. If the energy in the next
section is less than the 60-second energy in the best candidate so
far, skip to the next section without examining it carefully,
because the section cannot possibly have a one-minute section with
greater energy.
while (section->energy > candidate) {
candidate=max(candidate, search(section, 60));
section++;
}
6. candidate is the mean max for 60 seconds.
Enhancements that are not implemented:
- The two-minute overlapping sections can be reused for 59
seconds, etc. The algorithm will degrade to exhaustive search
if the looked-for interval is much smaller than the enclosing
interval.
- The sections can be sorted by energy in reverse order before
step #4. Then the search in #5 can be terminated early, the
first time it fails. In practice, the comparisons in the
search outnumber the saved comparisons. But this might be a
useful optimization if the windows are reused per the previous
idea.
*/
void
MeanMaxComputer::integrate_series(cpintdata &data)
{
// would be better to do pure QT and use QVector -- but no memory leak
integrated.resize(data.points.size()+1);
int i;
data_t acc=0;
for (i=0; i<data.points.size(); i++) {
integrated[i]=acc;
acc+=data.points[i].value;
}
integrated[i]=acc;
return;
}
data_t
MeanMaxComputer::partial_max_mean(int start, int end, int length, int *offset)
{
int i=0;
data_t candidate=0;
int best_i=0;
for (i=start; i<(1+end-length); i++) {
data_t test_energy=integrated[length+i]-integrated[i];
if (test_energy>candidate) {
candidate=test_energy;
best_i=i;
}
}
if (offset) *offset=best_i;
return candidate;
}
data_t
MeanMaxComputer::divided_max_mean(int datalength, int length, int *offset)
{
int shift=length;
//if sorting data the following is an important speedup hack
if (shift>180) shift=180;
int window_length=length+shift;
if (window_length>datalength) window_length=datalength;
// put down as many windows as will fit without overrunning data
int start=0;
int end=0;
data_t energy=0;
data_t candidate=0;
int this_offset=0;
for (start=0; start+window_length<=datalength; start+=shift) {
end=start+window_length;
energy=integrated[end]-integrated[start];
if (energy < candidate) {
continue;
}
data_t window_mm=partial_max_mean(start, end, length, &this_offset);
if (window_mm>candidate) {
candidate=window_mm;
if (offset) *offset=this_offset;
}
}
// if the overlapping windows don't extend to the end of the data,
// let's tack another one on at the end
if (end<datalength) {
start=datalength-window_length;
end=datalength;
energy=integrated[end]-integrated[start];
if (energy >= candidate) {
data_t window_mm=partial_max_mean(start, end, length, &this_offset);
if (window_mm>candidate) {
candidate=window_mm;
if (offset) *offset=this_offset;
}
}
}
return candidate;
}
void
MeanMaxComputer::run()
{
// xPower and NP need watts to be present
RideFile::SeriesType baseSeries = (series == RideFile::xPower || series == RideFile::NP || series == RideFile::wattsKg) ?
RideFile::watts : series;
if (series == RideFile::vam) baseSeries = RideFile::alt;
// only bother if the data series is actually present
if (ride->isDataPresent(baseSeries) == false) return;
// if we want decimal places only keep to 1 dp max
// this is a factor that is applied at the end to
// convert from high-precision double to long
// e.g. 145.456 becomes 1455 if we want decimals
// and becomes 145 if we don't
double decimals = pow(10, RideFileCache::decimalsFor(series));
//double decimals = RideFile::decimalsFor(baseSeries) ? 10 : 1;
// decritize the data series - seems wrong, since it just
// rounds to the nearest second - what if the recIntSecs
// is less than a second? Has been used for a long while
// so going to leave in tact for now - apart from the
// addition of code to fill in gaps in recording since
// they affect the NP/xPower algorithm badly and will skew
// the calculations of >6m since windowsize is used to
// determine segment duration rather than examining the
// timestamps on each sample
// the decrit will also pull timestamps back to start at
// zero, since some files have a very large start time
// that creates work for nil effect (but increases compute
// time drastically).
cpintdata data;
data.rec_int_ms = (int) round(ride->recIntSecs() * 1000.0);
double lastsecs = 0;
bool first = true;
double offset = 0;
foreach (const RideFilePoint *p, ride->dataPoints()) {
// get offset to apply on all samples if first sample
if (first == true) {
offset = p->secs;
first = false;
}
// drag back to start at 0s
double psecs = p->secs - offset;
// fill in any gaps in recording - use same dodgy rounding as before
int count = (psecs - lastsecs - ride->recIntSecs()) / ride->recIntSecs();
// gap more than an hour, damn that ride file is a mess
if (count > 3600) count = 1;
for(int i=0; i<count; i++)
data.points.append(cpintpoint(round(lastsecs+((i+1)*ride->recIntSecs() *1000.0)/1000), 0));
lastsecs = psecs;
double secs = round(psecs * 1000.0) / 1000;
if (secs > 0) data.points.append(cpintpoint(secs, (int) round(p->value(baseSeries))));
}
// don't bother with insufficient data
if (!data.points.count()) return;
int total_secs = (int) ceil(data.points.back().secs);
// don't allow data more than two days
// was one week, but no single ride is longer
// than 2 days, even if you are doing RAAM
if (total_secs > 2*24*60*60) return;
// don't allow if badly parsed or time goes backwards
if (total_secs < 0) return;
//
// Pre-process the data for NP, xPower and VAM
//
// VAM - adjust to Vertical Ascent per Hour
if (series == RideFile::vam) {
double lastAlt=0;
for (int i=0; i<data.points.size(); i++) {
// handle drops gracefully (and first sample too)
// if you manage to rise >5m in a second thats a data error too!
if (!lastAlt || (data.points[i].value - lastAlt) > 5) lastAlt=data.points[i].value;
// NOTE: It is 360 not 3600 because Altitude is factored for decimal places
// since it is the base data series, but we are calculating VAM
// And we multiply by 10 at the end!
double vam = (((data.points[i].value - lastAlt) * 360)/ride->recIntSecs()) * 10;
if (vam < 0) vam = 0;
lastAlt = data.points[i].value;
data.points[i].value = vam;
}
}
// NP - rolling 30s avg ^ 4
if (series == RideFile::NP) {
int rollingwindowsize = 30 / ride->recIntSecs();
// no point doing a rolling average if the
// sample rate is greater than the rolling average
// window!!
if (rollingwindowsize > 1) {
QVector<double> rolling(rollingwindowsize);
int index = 0;
double sum = 0;
// loop over the data and convert to a rolling
// average for the given windowsize
for (int i=0; i<data.points.size(); i++) {
sum += data.points[i].value;
sum -= rolling[index];
rolling[index] = data.points[i].value;
data.points[i].value = pow(sum/(double)rollingwindowsize,4.0f); // raise rolling average to 4th power
// move index on/round
index = (index >= rollingwindowsize-1) ? 0 : index+1;
}
}
}
// xPower - 25s EWA - uses same algorithm as BikeScore.cpp
if (series == RideFile::xPower) {
const double exp = 2.0f / ((25.0f / ride->recIntSecs()) + 1.0f);
const double rem = 1.0f - exp;
int rollingwindowsize = 25 / ride->recIntSecs();
double ewma = 0.0;
double sum = 0.0; // as we ramp up
// no point doing a rolling average if the
// sample rate is greater than the rolling average
// window!!
if (rollingwindowsize > 1) {
// loop over the data and convert to a EWMA
for (int i=0; i<data.points.size(); i++) {
if (i < rollingwindowsize) {
// get up to speed
sum += data.points[i].value;
ewma = sum / (i+1);
} else {
// we're up to speed
ewma = (data.points[i].value * exp) + (ewma * rem);
}
data.points[i].value = pow(ewma, 4.0f);
}
}
}
if (series == RideFile::wattsKg) {
for (int i=0; i<data.points.size(); i++) {
double wattsKg = data.points[i].value / ride->getWeight();
data.points[i].value = wattsKg;
}
}
// the bests go in here...
QVector <double> ride_bests(total_secs + 1);
integrate_series(data);
for (int i=1; i<data.points.size(); i++) {
int offset;
data_t c=divided_max_mean(data.points.size(),i,&offset);
// snaffle it away
int sec = i*ride->recIntSecs();
data_t val = c / (data_t)i;
if (sec < ride_bests.size()) {
if (series == RideFile::NP || series == RideFile::xPower)
ride_bests[sec] = pow(val, 0.25f);
else
ride_bests[sec] = val;
}
}
//
// FILL IN THE GAPS AND FILL TARGET ARRAY
//
// We want to present a full set of bests for
// every duration so the data interface for this
// cache can remain the same, but the level of
// accuracy/granularity can change in here in the
// future if some fancy new algorithm arrives
//
double last = 0;
array.resize(ride_bests.count());
for (int i=ride_bests.size()-1; i; i--) {
if (ride_bests[i] == 0) ride_bests[i]=last;
else last = ride_bests[i];
// convert from double to long, preserving the
// precision by applying a multiplier
array[i] = ride_bests[i] * decimals;
}
}
void
RideFileCache::computeDistribution(QVector<float> &array, RideFile::SeriesType series)
{
RideFile::SeriesType baseSeries = (series == RideFile::wattsKg) ?
RideFile::watts : series;
// only bother if the data series is actually present
if (ride->isDataPresent(baseSeries) == false) return;
// get zones that apply, if any
int zoneRange = main->zones() ? main->zones()->whichRange(ride->startTime().date()) : -1;
int hrZoneRange = main->hrZones() ? main->hrZones()->whichRange(ride->startTime().date()) : -1;
if (zoneRange != -1) CP=main->zones()->getCP(zoneRange);
else CP=0;
if (hrZoneRange != -1) LTHR=main->hrZones()->getLT(hrZoneRange);
else LTHR=0;
// setup the array based upon the ride
int decimals = decimalsFor(series); //RideFile::decimalsFor(series) ? 1 : 0;
double min = RideFile::minimumFor(series) * pow(10, decimals);
double max = RideFile::maximumFor(series) * pow(10, decimals);
// lets resize the array to the right size
// it will also initialise with a default value
// which for longs is handily zero
array.resize(max-min);
foreach(RideFilePoint *dp, ride->dataPoints()) {
double value = dp->value(baseSeries);
if (series == RideFile::wattsKg) {
value /= ride->getWeight();
}
float lvalue = value * pow(10, decimals);
// watts time in zone
if (series == RideFile::watts && zoneRange != -1)
wattsTimeInZone[main->zones()->whichZone(zoneRange, dp->value(series))] += ride->recIntSecs();
// hr time in zone
if (series == RideFile::hr && hrZoneRange != -1)
hrTimeInZone[main->hrZones()->whichZone(hrZoneRange, dp->value(series))] += ride->recIntSecs();
int offset = lvalue - min;
if (offset >= 0 && offset < array.size()) array[offset] += ride->recIntSecs();
}
}
//
// AGGREGATE FOR A GIVEN DATE RANGE
//
static QDate dateFromFileName(const QString filename) {
QRegExp rx("^(\\d\\d\\d\\d)_(\\d\\d)_(\\d\\d)_\\d\\d_\\d\\d_\\d\\d\\..*$");
if (rx.exactMatch(filename)) {
QDate date(rx.cap(1).toInt(), rx.cap(2).toInt(), rx.cap(3).toInt());
if (date.isValid()) return date;
}
return QDate(); // nil date
}
// select and update bests
static void meanMaxAggregate(QVector<double> &into, QVector<double> &other, QVector<QDate>&dates, QDate rideDate)
{
if (into.size() < other.size()) {
into.resize(other.size());
dates.resize(other.size());
}
for (int i=0; i<other.size(); i++)
if (other[i] > into[i]) {
into[i] = other[i];
dates[i] = rideDate;
}
}
// resize into and then sum the arrays
static void distAggregate(QVector<double> &into, QVector<double> &other)
{
if (into.size() < other.size()) into.resize(other.size());
for (int i=0; i<other.size(); i++) into[i] += other[i];
}
RideFileCache::RideFileCache(MainWindow *main, QDate start, QDate end, bool filter, QStringList files)
: start(start), end(end), main(main), rideFileName(""), ride(0)
{
// Oh lets get from the cache if we can
foreach(RideFileCache *p, main->cpxCache) {
if (p->start == start && p->end == end) {
*this = *p;
return;
}
}
// resize all the arrays to zero - expand as neccessary
xPowerMeanMax.resize(0);
npMeanMax.resize(0);
wattsMeanMax.resize(0);
hrMeanMax.resize(0);
cadMeanMax.resize(0);
nmMeanMax.resize(0);
kphMeanMax.resize(0);
xPowerMeanMax.resize(0);
npMeanMax.resize(0);
vamMeanMax.resize(0);
wattsKgMeanMax.resize(0);
wattsDistribution.resize(0);
hrDistribution.resize(0);
cadDistribution.resize(0);
nmDistribution.resize(0);
kphDistribution.resize(0);
xPowerDistribution.resize(0);
npDistribution.resize(0);
wattsKgDistribution.resize(0);
// time in zone are fixed to 10 zone max
wattsTimeInZone.resize(10);
hrTimeInZone.resize(10);
// set cursor busy whilst we aggregate -- bit of feedback
// and less intrusive than a popup box
main->setCursor(Qt::WaitCursor);
// Iterate over the ride files (not the cpx files since they /might/ not
// exist, or /might/ be out of date.
foreach (QString rideFileName, RideFileFactory::instance().listRideFiles(main->home)) {
QDate rideDate = dateFromFileName(rideFileName);
if (((filter == true && files.contains(rideFileName)) || filter == false) &&
rideDate >= start && rideDate <= end) {
// get its cached values (will refresh if needed...)
RideFileCache rideCache(main, main->home.absolutePath() + "/" + rideFileName);
// lets aggregate
meanMaxAggregate(wattsMeanMaxDouble, rideCache.wattsMeanMaxDouble, wattsMeanMaxDate, rideDate);
meanMaxAggregate(hrMeanMaxDouble, rideCache.hrMeanMaxDouble, hrMeanMaxDate, rideDate);
meanMaxAggregate(cadMeanMaxDouble, rideCache.cadMeanMaxDouble, cadMeanMaxDate, rideDate);
meanMaxAggregate(nmMeanMaxDouble, rideCache.nmMeanMaxDouble, nmMeanMaxDate, rideDate);
meanMaxAggregate(kphMeanMaxDouble, rideCache.kphMeanMaxDouble, kphMeanMaxDate, rideDate);
meanMaxAggregate(xPowerMeanMaxDouble, rideCache.xPowerMeanMaxDouble, xPowerMeanMaxDate, rideDate);
meanMaxAggregate(npMeanMaxDouble, rideCache.npMeanMaxDouble, npMeanMaxDate, rideDate);
meanMaxAggregate(vamMeanMaxDouble, rideCache.vamMeanMaxDouble, vamMeanMaxDate, rideDate);
meanMaxAggregate(wattsKgMeanMaxDouble, rideCache.wattsKgMeanMaxDouble, wattsKgMeanMaxDate, rideDate);
distAggregate(wattsDistributionDouble, rideCache.wattsDistributionDouble);
distAggregate(hrDistributionDouble, rideCache.hrDistributionDouble);
distAggregate(cadDistributionDouble, rideCache.cadDistributionDouble);
distAggregate(nmDistributionDouble, rideCache.nmDistributionDouble);
distAggregate(kphDistributionDouble, rideCache.kphDistributionDouble);
distAggregate(xPowerDistributionDouble, rideCache.xPowerDistributionDouble);
distAggregate(npDistributionDouble, rideCache.npDistributionDouble);
distAggregate(wattsKgDistributionDouble, rideCache.wattsKgDistributionDouble);
// cumulate timeinzones
for (int i=0; i<10; i++) {
hrTimeInZone[i] += rideCache.hrTimeInZone[i];
wattsTimeInZone[i] += rideCache.wattsTimeInZone[i];
}
}
}
// set the cursor back to normal
main->setCursor(Qt::ArrowCursor);
// lets add to the cache for others to re-use
if (main->cpxCache.count() > maxcache) {
delete(main->cpxCache.at(0));
main->cpxCache.removeAt(0);
}
main->cpxCache.append(new RideFileCache(this));
}
//
// PERSISTANCE
//
void
RideFileCache::serialize(QDataStream *out)
{
RideFileCacheHeader head;
// write header
head.version = RideFileCacheVersion;
head.CP = CP;
head.LTHR = LTHR;
head.wattsMeanMaxCount = wattsMeanMax.size();
head.hrMeanMaxCount = hrMeanMax.size();
head.cadMeanMaxCount = cadMeanMax.size();
head.nmMeanMaxCount = nmMeanMax.size();
head.kphMeanMaxCount = kphMeanMax.size();
head.xPowerMeanMaxCount = xPowerMeanMax.size();
head.npMeanMaxCount = npMeanMax.size();
head.vamMeanMaxCount = vamMeanMax.size();
head.wattsKgMeanMaxCount = wattsKgMeanMax.size();
head.wattsDistCount = wattsDistribution.size();
head.xPowerDistCount = xPowerDistribution.size();
head.npDistCount = xPowerDistribution.size();
head.hrDistCount = hrDistribution.size();
head.cadDistCount = cadDistribution.size();
head.nmDistrCount = nmDistribution.size();
head.kphDistCount = kphDistribution.size();
head.wattsKgDistCount = wattsKgDistribution.size();
out->writeRawData((const char *) &head, sizeof(head));
// write meanmax
out->writeRawData((const char *) wattsMeanMax.data(), sizeof(float) * wattsMeanMax.size());
out->writeRawData((const char *) hrMeanMax.data(), sizeof(float) * hrMeanMax.size());
out->writeRawData((const char *) cadMeanMax.data(), sizeof(float) * cadMeanMax.size());
out->writeRawData((const char *) nmMeanMax.data(), sizeof(float) * nmMeanMax.size());
out->writeRawData((const char *) kphMeanMax.data(), sizeof(float) * kphMeanMax.size());
out->writeRawData((const char *) xPowerMeanMax.data(), sizeof(float) * xPowerMeanMax.size());
out->writeRawData((const char *) npMeanMax.data(), sizeof(float) * npMeanMax.size());
out->writeRawData((const char *) vamMeanMax.data(), sizeof(float) * vamMeanMax.size());
out->writeRawData((const char *) wattsKgMeanMax.data(), sizeof(float) * wattsKgMeanMax.size());
// write dist
out->writeRawData((const char *) wattsDistribution.data(), sizeof(float) * wattsDistribution.size());
out->writeRawData((const char *) hrDistribution.data(), sizeof(float) * hrDistribution.size());
out->writeRawData((const char *) cadDistribution.data(), sizeof(float) * cadDistribution.size());
out->writeRawData((const char *) nmDistribution.data(), sizeof(float) * nmDistribution.size());
out->writeRawData((const char *) kphDistribution.data(), sizeof(float) * kphDistribution.size());
out->writeRawData((const char *) xPowerDistribution.data(), sizeof(float) * xPowerDistribution.size());
out->writeRawData((const char *) npDistribution.data(), sizeof(float) * npDistribution.size());
out->writeRawData((const char *) wattsKgDistribution.data(), sizeof(float) * wattsKgDistribution.size());
// time in zone
out->writeRawData((const char *) wattsTimeInZone.data(), sizeof(float) * wattsTimeInZone.size());
out->writeRawData((const char *) hrTimeInZone.data(), sizeof(float) * hrTimeInZone.size());
}
void
RideFileCache::readCache()
{
RideFileCacheHeader head;
QFile cacheFile(cacheFileName);
if (cacheFile.open(QIODevice::ReadOnly) == true) {
QDataStream inFile(&cacheFile);
inFile.readRawData((char *) &head, sizeof(head));
// resize all the arrays to fit
wattsMeanMax.resize(head.wattsMeanMaxCount);
hrMeanMax.resize(head.hrMeanMaxCount);
cadMeanMax.resize(head.cadMeanMaxCount);
nmMeanMax.resize(head.nmMeanMaxCount);
kphMeanMax.resize(head.kphMeanMaxCount);
npMeanMax.resize(head.npMeanMaxCount);
vamMeanMax.resize(head.vamMeanMaxCount);
xPowerMeanMax.resize(head.xPowerMeanMaxCount);
wattsKgMeanMax.resize(head.wattsKgMeanMaxCount);
wattsDistribution.resize(head.wattsDistCount);
hrDistribution.resize(head.hrDistCount);
cadDistribution.resize(head.cadDistCount);
nmDistribution.resize(head.nmDistrCount);
kphDistribution.resize(head.kphDistCount);
xPowerDistribution.resize(head.xPowerDistCount);
npDistribution.resize(head.npDistCount);
wattsKgDistribution.resize(head.wattsKgDistCount);
// read in the arrays
inFile.readRawData((char *) wattsMeanMax.data(), sizeof(float) * wattsMeanMax.size());
inFile.readRawData((char *) hrMeanMax.data(), sizeof(float) * hrMeanMax.size());
inFile.readRawData((char *) cadMeanMax.data(), sizeof(float) * cadMeanMax.size());
inFile.readRawData((char *) nmMeanMax.data(), sizeof(float) * nmMeanMax.size());
inFile.readRawData((char *) kphMeanMax.data(), sizeof(float) * kphMeanMax.size());
inFile.readRawData((char *) xPowerMeanMax.data(), sizeof(float) * xPowerMeanMax.size());
inFile.readRawData((char *) npMeanMax.data(), sizeof(float) * npMeanMax.size());
inFile.readRawData((char *) vamMeanMax.data(), sizeof(float) * vamMeanMax.size());
inFile.readRawData((char *) wattsKgMeanMax.data(), sizeof(float) * wattsKgMeanMax.size());
// write dist
inFile.readRawData((char *) wattsDistribution.data(), sizeof(float) * wattsDistribution.size());
inFile.readRawData((char *) hrDistribution.data(), sizeof(float) * hrDistribution.size());
inFile.readRawData((char *) cadDistribution.data(), sizeof(float) * cadDistribution.size());
inFile.readRawData((char *) nmDistribution.data(), sizeof(float) * nmDistribution.size());
inFile.readRawData((char *) kphDistribution.data(), sizeof(float) * kphDistribution.size());
inFile.readRawData((char *) xPowerDistribution.data(), sizeof(float) * xPowerDistribution.size());
inFile.readRawData((char *) npDistribution.data(), sizeof(float) * npDistribution.size());
inFile.readRawData((char *) wattsKgDistribution.data(), sizeof(float) * wattsKgDistribution.size());
// time in zone
inFile.readRawData((char *) wattsTimeInZone.data(), sizeof(float) * 10);
inFile.readRawData((char *) hrTimeInZone.data(), sizeof(float) * 10);
// setup the doubles the users use
doubleArray(wattsMeanMaxDouble, wattsMeanMax, RideFile::watts);
doubleArray(hrMeanMaxDouble, hrMeanMax, RideFile::hr);
doubleArray(cadMeanMaxDouble, cadMeanMax, RideFile::cad);
doubleArray(nmMeanMaxDouble, nmMeanMax, RideFile::nm);
doubleArray(kphMeanMaxDouble, kphMeanMax, RideFile::kph);
doubleArray(npMeanMaxDouble, npMeanMax, RideFile::NP);
doubleArray(vamMeanMaxDouble, vamMeanMax, RideFile::vam);
doubleArray(xPowerMeanMaxDouble, xPowerMeanMax, RideFile::xPower);
doubleArray(wattsKgMeanMaxDouble, wattsKgMeanMax, RideFile::wattsKg);
doubleArray(wattsDistributionDouble, wattsDistribution, RideFile::watts);
doubleArray(hrDistributionDouble, hrDistribution, RideFile::hr);
doubleArray(cadDistributionDouble, cadDistribution, RideFile::cad);
doubleArray(nmDistributionDouble, nmDistribution, RideFile::nm);
doubleArray(kphDistributionDouble, kphDistribution, RideFile::kph);
doubleArray(xPowerDistributionDouble, xPowerDistribution, RideFile::xPower);
doubleArray(npDistributionDouble, npDistribution, RideFile::NP);
doubleArray(wattsKgDistributionDouble, wattsKgDistribution, RideFile::wattsKg);
cacheFile.close();
}
}
// unpack the longs into a double array
void RideFileCache::doubleArray(QVector<double> &into, QVector<float> &from, RideFile::SeriesType series)
{
double divisor = pow(10, decimalsFor(series)); // ? 10 : 1;
into.resize(from.size());
for(int i=0; i<from.size(); i++) into[i] = double(from[i]) / divisor;
return;
}