mirror of
https://github.com/GoldenCheetah/GoldenCheetah.git
synced 2026-02-14 08:38:45 +00:00
Last part of the search/filter functionality; * SearchBox now incorporates filter and search with a new widget. We can update this widget to include more fancy UI/Interactions without having to change the ride list or charts etc. * Added search/filter widget to the relevant charts and screens; Metrics, TreeMap, CP, Histogram, Activity Log, Ride list (refactored out of MainWindow) * Added namedsearches.xml and adding/selecting them from a drop down menu on the search box. * Fixed some performance bugs related to duplicate signals and redraw/reprocessing. Also ensured that CLucene remains optional -- but means no search or filter functionality unless it is available.
277 lines
11 KiB
C++
277 lines
11 KiB
C++
/*
|
|
* Copyright (c) 2011 Mark Liversedge (liversedge@gmail.com)
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by the Free
|
|
* Software Foundation; either version 2 of the License, or (at your option)
|
|
* any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program; if not, write to the Free Software Foundation, Inc., 51
|
|
* Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
#ifndef _GC_RideFileCache_h
|
|
#define _GC_RideFileCache_h 1
|
|
#include "RideFile.h"
|
|
#include <QString>
|
|
#include <QDataStream>
|
|
#include <QVector>
|
|
#include <QThread>
|
|
|
|
class MainWindow;
|
|
class RideFile;
|
|
|
|
#include "GoldenCheetah.h"
|
|
|
|
// used by Mark Rages' Mean Max Algorithm
|
|
#include <stdlib.h>
|
|
#include <stdint.h>
|
|
typedef double data_t;
|
|
|
|
// RideFileCache is used to get meanmax and sample distribution
|
|
// arrays when plotting CP curves and histograms. It is precoputed
|
|
// to save time and cached in a file .cpx
|
|
//
|
|
static const unsigned int RideFileCacheVersion = 6;
|
|
// revision history:
|
|
// version date description
|
|
// 1 29-Apr-11 Initial - header, mean-max & distribution data blocks
|
|
// 2 02-May-11 Added LTHR/CP used to header and Time In Zone block
|
|
// 3 02-May-11 Moved to float precision not integer.
|
|
// 4 02-May-11 Moved to Mark Rages mean-max function with higher precision
|
|
// 5 18-Aug-11 Added VAM mean maximals
|
|
// 6 27-Jun-12 Added W/kg mean maximals and distribution
|
|
|
|
// The cache file (.cpx) has a binary format:
|
|
// 1 x Header data - describing the version and contents of the cache
|
|
// n x Blocks - meanmax or distribution arrays
|
|
// 1 x Watts TIZ - 10 floats
|
|
// 1 x Heartrate TIZ - 10 floats
|
|
|
|
// The header is written directly to disk, the only
|
|
// field which is endian sensitive is the count field
|
|
// which will always be written in local format since these
|
|
// files are local caches we do not worry about endianness
|
|
struct RideFileCacheHeader {
|
|
|
|
unsigned int version;
|
|
|
|
unsigned int wattsMeanMaxCount,
|
|
hrMeanMaxCount,
|
|
cadMeanMaxCount,
|
|
nmMeanMaxCount,
|
|
kphMeanMaxCount,
|
|
xPowerMeanMaxCount,
|
|
npMeanMaxCount,
|
|
vamMeanMaxCount,
|
|
wattsKgMeanMaxCount,
|
|
wattsDistCount,
|
|
hrDistCount,
|
|
cadDistCount,
|
|
nmDistrCount,
|
|
kphDistCount,
|
|
xPowerDistCount,
|
|
npDistCount,
|
|
wattsKgDistCount;
|
|
|
|
int LTHR, // used to calculate Time in Zone (TIZ)
|
|
CP; // used to calculate Time in Zone (TIZ)
|
|
|
|
};
|
|
|
|
|
|
// Each block of data is an array of uint32_t (32-bit "local-endian")
|
|
// integers so the "count" setting within the block definition tells
|
|
// us how long it is so we can read in one instruction and reference
|
|
// it directly. Of course, this means that for data series that require
|
|
// decimal places (e.g. speed) they are stored multiplied by 10^dp.
|
|
// so 27.1 is stored as 271, 27.454 is stored as 27454, 100.0001 is
|
|
// stored as 1000001.
|
|
|
|
// So that none of the plots need to understand the format of this
|
|
// cache file this class is repsonsible for supplying the pre-computed
|
|
// values they desire. If the values have not been computed or are
|
|
// out of date then they are computed as needed.
|
|
//
|
|
// This cache is also updated by the metricaggregator to ensure it
|
|
// is updated alongside the metrics. So, in theory, at runtime, once
|
|
// the arrays have been computed they can be retrieved quickly.
|
|
//
|
|
// This is the main user entry to the ridefile cached data.
|
|
class RideFileCache
|
|
{
|
|
public:
|
|
enum cachetype { meanmax, distribution, none };
|
|
typedef enum cachetype CacheType;
|
|
|
|
// Construct from a ridefile or its filename
|
|
// will reference cache if it exists, and create it
|
|
// if it doesn't. We allow to create from ridefile to
|
|
// save on ridefile reading if it is already opened by
|
|
// the calling class.
|
|
// to save time you can pass the ride file if you already have it open
|
|
// and if you don't want the data and just want to check pass check=true
|
|
RideFileCache(MainWindow *main, QString filename, RideFile *ride =0, bool check = false);
|
|
|
|
// Construct a ridefile cache that represents the data
|
|
// across a date range. This is used to provide aggregated data.
|
|
RideFileCache(MainWindow *main, QDate start, QDate end, bool filter = false, QStringList files = QStringList());
|
|
|
|
static int decimalsFor(RideFile::SeriesType series);
|
|
|
|
// get data
|
|
QVector<double> &meanMaxArray(RideFile::SeriesType); // return meanmax array for the given series
|
|
QVector<QDate> &meanMaxDates(RideFile::SeriesType series); // the dates of the bests
|
|
QVector<double> &distributionArray(RideFile::SeriesType); // return distribution array for the given series
|
|
QVector<float> &wattsZoneArray() { return wattsTimeInZone; }
|
|
QVector<float> &hrZoneArray() { return hrTimeInZone; }
|
|
|
|
// explain the array binning / sampling
|
|
double &distBinSize(RideFile::SeriesType); // return distribution bin size
|
|
double &meanMaxBinSize(RideFile::SeriesType); // return distribution bin size
|
|
|
|
protected:
|
|
|
|
void refreshCache(); // compute arrays and update cache
|
|
void readCache(); // just read from saved file and setup arrays
|
|
void serialize(QDataStream *out); // write to file
|
|
|
|
void compute(); // compute all arrays
|
|
|
|
// NOW replaced computeMeanMax with MeanMaxComputer class see bottom of file
|
|
//void computeMeanMax(QVector<float>&, RideFile::SeriesType); // compute mean max arrays
|
|
void computeDistribution(QVector<float>&, RideFile::SeriesType); // compute the distributions
|
|
|
|
|
|
private:
|
|
|
|
MainWindow *main;
|
|
QString rideFileName; // filename of ride
|
|
QString cacheFileName; // filename of cache file
|
|
RideFile *ride;
|
|
|
|
// used for zoning
|
|
int CP;
|
|
int LTHR;
|
|
|
|
// Should be 1 regardless of the rideFile::recIntSecs
|
|
// this might change in the future - but at the moment
|
|
// means that the data is "smoothed" to 1s samples
|
|
static const double _meanMaxBinSize = 1.0;
|
|
|
|
//
|
|
// MEAN MAXIMAL VALUES
|
|
//
|
|
// each array has a best for duration 0 - RideDuration seconds
|
|
QVector<float> wattsMeanMax; // RideFile::watts
|
|
QVector<float> hrMeanMax; // RideFile::hr
|
|
QVector<float> cadMeanMax; // RideFile::cad
|
|
QVector<float> nmMeanMax; // RideFile::nm
|
|
QVector<float> kphMeanMax; // RideFile::kph
|
|
QVector<float> xPowerMeanMax; // RideFile::kph
|
|
QVector<float> npMeanMax; // RideFile::kph
|
|
QVector<float> vamMeanMax; // RideFile::vam
|
|
QVector<float> wattsKgMeanMax; // watts/kg
|
|
|
|
QVector<double> wattsMeanMaxDouble; // RideFile::watts
|
|
QVector<double> hrMeanMaxDouble; // RideFile::hr
|
|
QVector<double> cadMeanMaxDouble; // RideFile::cad
|
|
QVector<double> nmMeanMaxDouble; // RideFile::nm
|
|
QVector<double> kphMeanMaxDouble; // RideFile::kph
|
|
QVector<double> xPowerMeanMaxDouble; // RideFile::kph
|
|
QVector<double> npMeanMaxDouble; // RideFile::kph
|
|
QVector<double> vamMeanMaxDouble; // RideFile::kph
|
|
QVector<double> wattsKgMeanMaxDouble; // watts/kg
|
|
|
|
QVector<QDate> wattsMeanMaxDate; // RideFile::watts
|
|
QVector<QDate> hrMeanMaxDate; // RideFile::hr
|
|
QVector<QDate> cadMeanMaxDate; // RideFile::cad
|
|
QVector<QDate> nmMeanMaxDate; // RideFile::nm
|
|
QVector<QDate> kphMeanMaxDate; // RideFile::kph
|
|
QVector<QDate> xPowerMeanMaxDate; // RideFile::kph
|
|
QVector<QDate> npMeanMaxDate; // RideFile::kph
|
|
QVector<QDate> vamMeanMaxDate; // RideFile::vam
|
|
QVector<QDate> wattsKgMeanMaxDate; // watts/kg
|
|
|
|
//
|
|
// SAMPLE DISTRIBUTION
|
|
//
|
|
// the distribution matches RideFile::decimalsFor(SeriesType series);
|
|
// each array contains a count (duration in recIntSecs) for each distrbution
|
|
// from RideFile::minimumFor() to RideFile::maximumFor(). The steps (binsize)
|
|
// is 1.0 or if the dataseries in question does have a nonZero value for
|
|
// RideFile::decimalsFor() then it will be distributed in 0.1 of a unit
|
|
QVector<float> wattsDistribution; // RideFile::watts
|
|
QVector<float> hrDistribution; // RideFile::hr
|
|
QVector<float> cadDistribution; // RideFile::cad
|
|
QVector<float> nmDistribution; // RideFile::nm
|
|
QVector<float> kphDistribution; // RideFile::kph
|
|
QVector<float> xPowerDistribution; // RideFile::kph
|
|
QVector<float> npDistribution; // RideFile::kph
|
|
QVector<float> wattsKgDistribution; // RideFile::wattsKg
|
|
|
|
QVector<double> wattsDistributionDouble; // RideFile::watts
|
|
QVector<double> hrDistributionDouble; // RideFile::hr
|
|
QVector<double> cadDistributionDouble; // RideFile::cad
|
|
QVector<double> nmDistributionDouble; // RideFile::nm
|
|
QVector<double> kphDistributionDouble; // RideFile::kph
|
|
QVector<double> xPowerDistributionDouble; // RideFile::kph
|
|
QVector<double> npDistributionDouble; // RideFile::kph
|
|
QVector<double> wattsKgDistributionDouble; // RideFile::wattsKg
|
|
|
|
|
|
QVector<float> wattsTimeInZone; // time in zone in seconds
|
|
QVector<float> hrTimeInZone; // time in zone in seconds
|
|
|
|
// we need to return doubles not longs, we just use longs
|
|
// to reduce disk storage
|
|
void doubleArray(QVector<double> &into, QVector<float> &from, RideFile::SeriesType series);
|
|
};
|
|
|
|
// Working structured inherited from CpintPlot.cpp
|
|
// could probably be factored out and just use the
|
|
// ridefile structures, but this keeps well tested
|
|
// and stable legacy code intact
|
|
struct cpintpoint {
|
|
double secs;
|
|
double value;
|
|
cpintpoint() : secs(0.0), value(0) {}
|
|
cpintpoint(double s, int w) : secs(s), value(w) {}
|
|
};
|
|
|
|
struct cpintdata {
|
|
QStringList errors;
|
|
QVector<cpintpoint> points;
|
|
int rec_int_ms;
|
|
cpintdata() : rec_int_ms(0) {}
|
|
};
|
|
|
|
// the mean-max computer ... runs in a thread
|
|
class MeanMaxComputer : public QThread
|
|
{
|
|
public:
|
|
MeanMaxComputer(RideFile *ride, QVector<float>&array, RideFile::SeriesType series)
|
|
: ride(ride), array(array), series(series) {}
|
|
void run();
|
|
|
|
private:
|
|
|
|
// Mark Rages' algorithm for fast find of mean max
|
|
data_t *integrate_series(cpintdata &data);
|
|
data_t partial_max_mean(data_t *dataseries_i, int start, int end, int length, int *offset);
|
|
data_t divided_max_mean(data_t *dataseries_i, int datalength, int length, int *offset);
|
|
|
|
RideFile *ride;
|
|
QVector<float> &array;
|
|
QVector<data_t> integratedArray;
|
|
|
|
RideFile::SeriesType series;
|
|
};
|
|
#endif // _GC_RideFileCache_h
|