Files
GoldenCheetah/src/AllPlot.cpp
2010-01-17 20:54:47 -08:00

787 lines
25 KiB
C++

/*
* Copyright (c) 2006 Sean C. Rhea (srhea@srhea.net)
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc., 51
* Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "AllPlot.h"
#include "MainWindow.h"
#include "AllPlotWindow.h"
#include "RideFile.h"
#include "RideItem.h"
#include "IntervalItem.h"
#include "Settings.h"
#include "Units.h"
#include "Zones.h"
#include <assert.h>
#include <qwt_plot_curve.h>
#include <qwt_plot_grid.h>
#include <qwt_plot_marker.h>
#include <qwt_text.h>
#include <qwt_legend.h>
#include <qwt_data.h>
#include <QMultiMap>
class IntervalPlotData : public QwtData
{
public:
IntervalPlotData(AllPlot *allPlot, MainWindow *mainWindow) :
allPlot(allPlot), mainWindow(mainWindow) {}
double x(size_t i) const ;
double y(size_t i) const ;
size_t size() const ;
virtual QwtData *copy() const ;
void init() ;
IntervalItem *intervalNum(int n) const;
int intervalCount() const;
AllPlot *allPlot;
MainWindow *mainWindow;
};
// define a background class to handle shading of power zones
// draws power zone bands IF zones are defined and the option
// to draw bonds has been selected
class AllPlotBackground: public QwtPlotItem
{
private:
AllPlot *parent;
public:
AllPlotBackground(AllPlot *_parent)
{
setZ(0.0);
parent = _parent;
}
virtual int rtti() const
{
return QwtPlotItem::Rtti_PlotUserItem;
}
virtual void draw(QPainter *painter,
const QwtScaleMap &, const QwtScaleMap &yMap,
const QRect &rect) const
{
RideItem *rideItem = parent->rideItem;
if (! rideItem)
return;
const Zones *zones = rideItem->zones;
int zone_range = rideItem->zoneRange();
if (parent->shadeZones() && (zone_range >= 0)) {
QList <int> zone_lows = zones->getZoneLows(zone_range);
int num_zones = zone_lows.size();
if (num_zones > 0) {
for (int z = 0; z < num_zones; z ++) {
QRect r = rect;
QColor shading_color = zoneColor(z, num_zones);
shading_color.setHsv(
shading_color.hue(),
shading_color.saturation() / 4,
shading_color.value()
);
r.setBottom(yMap.transform(zone_lows[z]));
if (z + 1 < num_zones)
r.setTop(yMap.transform(zone_lows[z + 1]));
if (r.top() <= r.bottom())
painter->fillRect(r, shading_color);
}
}
}
}
};
// Zone labels are drawn if power zone bands are enabled, automatically
// at the center of the plot
class AllPlotZoneLabel: public QwtPlotItem
{
private:
AllPlot *parent;
int zone_number;
double watts;
QwtText text;
public:
AllPlotZoneLabel(AllPlot *_parent, int _zone_number)
{
parent = _parent;
zone_number = _zone_number;
RideItem *rideItem = parent->rideItem;
if (! rideItem)
return;
const Zones *zones = rideItem->zones;
int zone_range = rideItem->zoneRange();
// create new zone labels if we're shading
if (parent->shadeZones() && (zone_range >= 0)) {
QList <int> zone_lows = zones->getZoneLows(zone_range);
QList <QString> zone_names = zones->getZoneNames(zone_range);
int num_zones = zone_lows.size();
assert(zone_names.size() == num_zones);
if (zone_number < num_zones) {
watts =
(
(zone_number + 1 < num_zones) ?
0.5 * (zone_lows[zone_number] + zone_lows[zone_number + 1]) :
(
(zone_number > 0) ?
(1.5 * zone_lows[zone_number] - 0.5 * zone_lows[zone_number - 1]) :
2.0 * zone_lows[zone_number]
)
);
text = QwtText(zone_names[zone_number]);
text.setFont(QFont("Helvetica",24, QFont::Bold));
QColor text_color = zoneColor(zone_number, num_zones);
text_color.setAlpha(64);
text.setColor(text_color);
}
}
setZ(1.0 + zone_number / 100.0);
}
virtual int rtti() const
{
return QwtPlotItem::Rtti_PlotUserItem;
}
void draw(QPainter *painter,
const QwtScaleMap &, const QwtScaleMap &yMap,
const QRect &rect) const
{
if (parent->shadeZones()) {
int x = (rect.left() + rect.right()) / 2;
int y = yMap.transform(watts);
// the following code based on source for QwtPlotMarker::draw()
QRect tr(QPoint(0, 0), text.textSize(painter->font()));
tr.moveCenter(QPoint(x, y));
text.draw(painter, tr);
}
}
};
static inline double
max(double a, double b) { if (a > b) return a; else return b; }
AllPlot::AllPlot(QWidget *parent, MainWindow *mainWindow):
QwtPlot(parent),
settings(NULL),
unit(0),
rideItem(NULL),
bydist(false),
shade_zones(true),
showPowerState(0),
showHrState(Qt::Checked),
showSpeedState(Qt::Checked),
showCadState(Qt::Checked),
showAltState(Qt::Checked)
{
boost::shared_ptr<QSettings> settings = GetApplicationSettings();
unit = settings->value(GC_UNIT);
useMetricUnits = (unit.toString() == "Metric");
smooth = settings->value(GC_RIDE_PLOT_SMOOTHING).toInt();
if (smooth < 2)
smooth = 30;
// create a background object for shading
bg = new AllPlotBackground(this);
bg->attach(this);
insertLegend(new QwtLegend(), QwtPlot::BottomLegend);
setCanvasBackground(Qt::white);
setXTitle();
wattsCurve = new QwtPlotCurve(tr("Power"));
QPen wattsPen = QPen(Qt::red);
wattsPen.setWidth(2);
wattsCurve->setPen(wattsPen);
hrCurve = new QwtPlotCurve(tr("Heart Rate"));
QPen hrPen = QPen(Qt::blue);
hrPen.setWidth(2);
hrCurve->setPen(hrPen);
hrCurve->setYAxis(yLeft2);
speedCurve = new QwtPlotCurve(tr("Speed"));
QPen speedPen = QPen(QColor(0, 204, 0));
speedPen.setWidth(2);
speedCurve->setPen(speedPen);
speedCurve->setYAxis(yRight);
cadCurve = new QwtPlotCurve(tr("Cadence"));
QPen cadPen = QPen(QColor(0, 204, 204));
cadPen.setWidth(2);
cadCurve->setPen(cadPen);
cadCurve->setYAxis(yLeft2);
altCurve = new QwtPlotCurve(tr("Altitude"));
// altCurve->setRenderHint(QwtPlotItem::RenderAntialiased);
QPen altPen(QColor(124, 91, 31));
altPen.setWidth(1);
altCurve->setPen(altPen);
QColor brush_color = QColor(124, 91, 31);
brush_color.setAlpha(64);
altCurve->setBrush(brush_color); // fill below the line
altCurve->setYAxis(yRight2);
intervalHighlighterCurve = new QwtPlotCurve();
QPen ihlPen = QPen(Qt::blue);
ihlPen.setWidth(2);
intervalHighlighterCurve->setPen(ihlPen);
intervalHighlighterCurve->setYAxis(yLeft);
QColor ihlbrush = QColor(Qt::blue);
ihlbrush.setAlpha(64);
intervalHighlighterCurve->setBrush(ihlbrush); // fill below the line
intervalHighlighterCurve->setData(IntervalPlotData(this, mainWindow));
intervalHighlighterCurve->attach(this);
this->legend()->remove(intervalHighlighterCurve); // don't show in legend
grid = new QwtPlotGrid();
grid->enableX(false);
QPen gridPen;
gridPen.setStyle(Qt::DotLine);
grid->setPen(gridPen);
grid->attach(this);
zoneLabels = QList <AllPlotZoneLabel *>::QList();
}
struct DataPoint {
double time, hr, watts, speed, cad, alt;
DataPoint(double t, double h, double w, double s, double c, double a) :
time(t), hr(h), watts(w), speed(s), cad(c), alt(a) {}
};
bool AllPlot::shadeZones() const
{
return (shade_zones && !wattsArray.empty());
}
void AllPlot::refreshZoneLabels()
{
foreach(AllPlotZoneLabel *label, zoneLabels) {
label->detach();
delete label;
}
zoneLabels.clear();
if (rideItem) {
int zone_range = rideItem->zoneRange();
const Zones *zones = rideItem->zones;
// generate labels for existing zones
if (zone_range >= 0) {
int num_zones = zones->numZones(zone_range);
for (int z = 0; z < num_zones; z ++) {
AllPlotZoneLabel *label = new AllPlotZoneLabel(this, z);
label->attach(this);
zoneLabels.append(label);
}
}
}
}
void
AllPlot::recalc()
{
if (timeArray.empty())
return;
int rideTimeSecs = (int) ceil(timeArray[arrayLength - 1]);
if (rideTimeSecs > 7*24*60*60) {
QwtArray<double> data;
if (!wattsArray.empty())
wattsCurve->setData(data, data);
if (!hrArray.empty())
hrCurve->setData(data, data);
if (!speedArray.empty())
speedCurve->setData(data, data);
if (!cadArray.empty())
cadCurve->setData(data, data);
if (!altArray.empty())
altCurve->setData(data, data);
return;
}
double totalWatts = 0.0;
double totalHr = 0.0;
double totalSpeed = 0.0;
double totalCad = 0.0;
double totalDist = 0.0;
double totalAlt = 0.0;
QList<DataPoint> list;
QVector<double> smoothWatts(rideTimeSecs + 1);
QVector<double> smoothHr(rideTimeSecs + 1);
QVector<double> smoothSpeed(rideTimeSecs + 1);
QVector<double> smoothCad(rideTimeSecs + 1);
QVector<double> smoothTime(rideTimeSecs + 1);
QVector<double> smoothDistance(rideTimeSecs + 1);
QVector<double> smoothAltitude(rideTimeSecs + 1);
for (int secs = 0; ((secs < smooth)
&& (secs < rideTimeSecs)); ++secs) {
smoothWatts[secs] = 0.0;
smoothHr[secs] = 0.0;
smoothSpeed[secs] = 0.0;
smoothCad[secs] = 0.0;
smoothTime[secs] = secs / 60.0;
smoothDistance[secs] = 0.0;
smoothAltitude[secs] = 0.0;
}
int i = 0;
for (int secs = smooth; secs <= rideTimeSecs; ++secs) {
while ((i < arrayLength) && (timeArray[i] <= secs)) {
DataPoint dp(timeArray[i],
(!hrArray.empty() ? hrArray[i] : 0),
(!wattsArray.empty() ? wattsArray[i] : 0),
(!speedArray.empty() ? speedArray[i] : 0),
(!cadArray.empty() ? cadArray[i] : 0),
(!altArray.empty() ? altArray[i] : 0));
if (!wattsArray.empty())
totalWatts += wattsArray[i];
if (!hrArray.empty())
totalHr += hrArray[i];
if (!speedArray.empty())
totalSpeed += speedArray[i];
if (!cadArray.empty())
totalCad += cadArray[i];
if (!altArray.empty())
totalAlt += altArray[i];
totalDist = distanceArray[i];
list.append(dp);
++i;
}
while (!list.empty() && (list.front().time < secs - smooth)) {
DataPoint &dp = list.front();
totalWatts -= dp.watts;
totalHr -= dp.hr;
totalSpeed -= dp.speed;
totalCad -= dp.cad;
totalAlt -= dp.alt;
list.removeFirst();
}
// TODO: this is wrong. We should do a weighted average over the
// seconds represented by each point...
if (list.empty()) {
smoothWatts[secs] = 0.0;
smoothHr[secs] = 0.0;
smoothSpeed[secs] = 0.0;
smoothCad[secs] = 0.0;
smoothAltitude[secs] = smoothAltitude[secs - 1];
}
else {
smoothWatts[secs] = totalWatts / list.size();
smoothHr[secs] = totalHr / list.size();
smoothSpeed[secs] = totalSpeed / list.size();
smoothCad[secs] = totalCad / list.size();
smoothAltitude[secs] = totalAlt / list.size();
}
smoothDistance[secs] = totalDist;
smoothTime[secs] = secs / 60.0;
}
QVector<double> &xaxis = bydist ? smoothDistance : smoothTime;
int startingIndex = qMin(smooth, rideTimeSecs);
int totalPoints = rideTimeSecs + 1 - startingIndex;
// set curves
if (!wattsArray.empty())
wattsCurve->setData(xaxis.data() + startingIndex, smoothWatts.data() + startingIndex, totalPoints);
if (!hrArray.empty())
hrCurve->setData(xaxis.data() + startingIndex, smoothHr.data() + startingIndex, totalPoints);
if (!speedArray.empty())
speedCurve->setData(xaxis.data() + startingIndex, smoothSpeed.data() + startingIndex, totalPoints);
if (!cadArray.empty())
cadCurve->setData(xaxis.data() + startingIndex, smoothCad.data() + startingIndex, totalPoints);
if (!altArray.empty())
altCurve->setData(xaxis.data() + startingIndex, smoothAltitude.data() + startingIndex, totalPoints);
setAxisScale(xBottom, 0.0, bydist ? totalDist : smoothTime[rideTimeSecs]);
setYMax();
refreshIntervalMarkers();
refreshZoneLabels();
replot();
}
void
AllPlot::refreshIntervalMarkers()
{
foreach(QwtPlotMarker *mrk, d_mrk) {
mrk->detach();
delete mrk;
}
d_mrk.clear();
QRegExp wkoAuto("^(Peak *[0-9]*(s|min)|Entire workout|Find #[0-9]*) *\\([^)]*\\)$");
if (rideItem->ride()) {
foreach(const RideFileInterval &interval, rideItem->ride()->intervals()) {
// skip WKO autogenerated peak intervals
if (wkoAuto.exactMatch(interval.name))
continue;
QwtPlotMarker *mrk = new QwtPlotMarker;
d_mrk.append(mrk);
mrk->attach(this);
mrk->setLineStyle(QwtPlotMarker::VLine);
mrk->setLabelAlignment(Qt::AlignRight | Qt::AlignTop);
mrk->setLinePen(QPen(Qt::black, 0, Qt::DashDotLine));
QwtText text(interval.name);
text.setFont(QFont("Helvetica", 10, QFont::Bold));
text.setColor(Qt::black);
if (!bydist)
mrk->setValue(interval.start / 60.0, 0.0);
else
mrk->setValue((useMetricUnits ? 1 : MILES_PER_KM) *
rideItem->ride()->timeToDistance(interval.start), 0.0);
mrk->setLabel(text);
}
}
}
void
AllPlot::setYMax()
{
if (wattsCurve->isVisible()) {
setAxisTitle(yLeft, "Watts");
setAxisScale(yLeft, 0.0, 1.05 * wattsCurve->maxYValue());
setAxisLabelRotation(yLeft,270);
setAxisLabelAlignment(yLeft,Qt::AlignVCenter);
}
if (hrCurve->isVisible() || cadCurve->isVisible()) {
double ymax = 0;
QStringList labels;
if (hrCurve->isVisible()) {
labels << "BPM";
ymax = hrCurve->maxYValue();
}
if (cadCurve->isVisible()) {
labels << "RPM";
ymax = qMax(ymax, cadCurve->maxYValue());
}
setAxisTitle(yLeft2, labels.join(" / "));
setAxisScale(yLeft2, 0.0, 1.05 * ymax);
setAxisLabelRotation(yLeft2,270);
setAxisLabelAlignment(yLeft2,Qt::AlignVCenter);
}
if (speedCurve->isVisible()) {
setAxisTitle(yRight, (useMetricUnits ? tr("KPH") : tr("MPH")));
setAxisScale(yRight, 0.0, 1.05 * speedCurve->maxYValue());
setAxisLabelRotation(yRight,90);
setAxisLabelAlignment(yRight,Qt::AlignVCenter);
}
if (altCurve->isVisible()) {
setAxisTitle(yRight2, useMetricUnits ? tr("Meters") : tr("Feet"));
double ymin = altCurve->minYValue();
double ymax = qMax(ymin + 100, 1.05 * altCurve->maxYValue());
setAxisScale(yRight2, ymin, ymax);
setAxisLabelRotation(yRight2,90);
setAxisLabelAlignment(yRight2,Qt::AlignVCenter);
altCurve->setBaseline(ymin);
}
enableAxis(yLeft, wattsCurve->isVisible());
enableAxis(yLeft2, hrCurve->isVisible() || cadCurve->isVisible());
enableAxis(yRight, speedCurve->isVisible());
enableAxis(yRight2, altCurve->isVisible());
}
void
AllPlot::setXTitle()
{
if (bydist)
setAxisTitle(xBottom, tr("Distance ")+QString(unit.toString() == "Metric"?"(km)":"(miles)"));
else
setAxisTitle(xBottom, tr("Time (minutes)"));
}
void
AllPlot::setData(RideItem *_rideItem)
{
rideItem = _rideItem;
wattsArray.clear();
RideFile *ride = rideItem->ride();
if (ride && ride->deviceType() != QString("Manual CSV")) {
setTitle(ride->startTime().toString(GC_DATETIME_FORMAT));
const RideFileDataPresent *dataPresent = ride->areDataPresent();
int npoints = ride->dataPoints().size();
wattsArray.resize(dataPresent->watts ? npoints : 0);
hrArray.resize(dataPresent->hr ? npoints : 0);
speedArray.resize(dataPresent->kph ? npoints : 0);
cadArray.resize(dataPresent->cad ? npoints : 0);
altArray.resize(dataPresent->alt ? npoints : 0);
timeArray.resize(npoints);
distanceArray.resize(npoints);
// attach appropriate curves
wattsCurve->detach();
hrCurve->detach();
speedCurve->detach();
cadCurve->detach();
altCurve->detach();
if (!wattsArray.empty()) wattsCurve->attach(this);
if (!hrArray.empty()) hrCurve->attach(this);
if (!speedArray.empty()) speedCurve->attach(this);
if (!cadArray.empty()) cadCurve->attach(this);
if (!altArray.empty()) altCurve->attach(this);
wattsCurve->setVisible(dataPresent->watts && showPowerState < 2);
hrCurve->setVisible(dataPresent->hr && showHrState == Qt::Checked);
speedCurve->setVisible(dataPresent->kph && showSpeedState == Qt::Checked);
cadCurve->setVisible(dataPresent->cad && showCadState == Qt::Checked);
altCurve->setVisible(dataPresent->alt && showAltState == Qt::Checked);
arrayLength = 0;
foreach (const RideFilePoint *point, ride->dataPoints()) {
timeArray[arrayLength] = point->secs;
if (!wattsArray.empty())
wattsArray[arrayLength] = max(0, point->watts);
if (!hrArray.empty())
hrArray[arrayLength] = max(0, point->hr);
if (!speedArray.empty())
speedArray[arrayLength] = max(0,
(useMetricUnits
? point->kph
: point->kph * MILES_PER_KM));
if (!cadArray.empty())
cadArray[arrayLength] = max(0, point->cad);
if (!altArray.empty())
altArray[arrayLength] = (useMetricUnits
? point->alt
: point->alt * FEET_PER_METER);
distanceArray[arrayLength] = max(0,
(useMetricUnits
? point->km
: point->km * MILES_PER_KM));
++arrayLength;
}
recalc();
}
else {
setTitle("no data");
wattsCurve->detach();
hrCurve->detach();
speedCurve->detach();
cadCurve->detach();
altCurve->detach();
foreach(QwtPlotMarker *mrk, d_mrk)
delete mrk;
d_mrk.clear();
}
}
void
AllPlot::showPower(int id)
{
showPowerState = id;
wattsCurve->setVisible(id < 2);
shade_zones = (id == 0);
setYMax();
recalc();
}
void
AllPlot::showHr(int state)
{
showHrState = state;
assert(state != Qt::PartiallyChecked);
hrCurve->setVisible(state == Qt::Checked);
setYMax();
replot();
}
void
AllPlot::showSpeed(int state)
{
showSpeedState = state;
assert(state != Qt::PartiallyChecked);
speedCurve->setVisible(state == Qt::Checked);
setYMax();
replot();
}
void
AllPlot::showCad(int state)
{
showCadState = state;
assert(state != Qt::PartiallyChecked);
cadCurve->setVisible(state == Qt::Checked);
setYMax();
replot();
}
void
AllPlot::showAlt(int state)
{
showAltState = state;
assert(state != Qt::PartiallyChecked);
altCurve->setVisible(state == Qt::Checked);
setYMax();
replot();
}
void
AllPlot::showGrid(int state)
{
assert(state != Qt::PartiallyChecked);
grid->setVisible(state == Qt::Checked);
replot();
}
void
AllPlot::setSmoothing(int value)
{
smooth = value;
boost::shared_ptr<QSettings> settings = GetApplicationSettings();
settings->setValue(GC_RIDE_PLOT_SMOOTHING, value);
recalc();
}
void
AllPlot::setByDistance(int id)
{
bydist = (id == 1);
setXTitle();
recalc();
}
/*----------------------------------------------------------------------
* Interval plotting
*--------------------------------------------------------------------*/
/*
* HELPER FUNCTIONS:
* intervalNum - returns a pointer to the nth selected interval
* intervalCount - returns the number of highlighted intervals
*/
// note this is operating on the children of allIntervals and not the
// intervalWidget (QTreeWidget) -- this is why we do not use the
// selectedItems() member. N starts a one not zero.
IntervalItem *IntervalPlotData::intervalNum(int n) const
{
int highlighted=0;
const QTreeWidgetItem *allIntervals = mainWindow->allIntervalItems();
for (int i=0; i<allIntervals->childCount(); i++) {
IntervalItem *current = (IntervalItem *)allIntervals->child(i);
if (current != NULL) {
if (current->isSelected() == true) ++highlighted;
} else {
return NULL;
}
if (highlighted == n) return current;
}
return NULL;
}
// how many intervals selected?
int IntervalPlotData::intervalCount() const
{
int highlighted;
highlighted = 0;
if (mainWindow->allIntervalItems() == NULL) return 0; // not inited yet!
const QTreeWidgetItem *allIntervals = mainWindow->allIntervalItems();
for (int i=0; i<allIntervals->childCount(); i++) {
IntervalItem *current = (IntervalItem *)allIntervals->child(i);
if (current != NULL) {
if (current->isSelected() == true) {
++highlighted;
}
}
}
return highlighted;
}
/*
* INTERVAL HIGHLIGHTING CURVE
* IntervalPlotData - implements the qwtdata interface where
* x,y return point co-ordinates and
* size returns the number of points
*/
// The interval curve data is derived from the intervals that have
// been selected in the MainWindow leftlayout for each selected
// interval we return 4 data points; bottomleft, topleft, topright
// and bottom right.
//
// the points correspond to:
// bottom left = interval start, 0 watts
// top left = interval start, maxwatts
// top right = interval stop, maxwatts
// bottom right = interval stop, 0 watts
//
double IntervalPlotData::x(size_t i) const
{
// for each interval there are four points, which interval is this for?
int interval = i ? i/4 : 0;
interval += 1; // interval numbers start at 1 not ZERO in the utility functions
double multiplier = allPlot->useMetricUnits ? 1 : MILES_PER_KM;
// get the interval
IntervalItem *current = intervalNum(interval);
if (current == NULL) return 0; // out of bounds !?
// which point are we returning?
switch (i%4) {
case 0 : return allPlot->byDistance() ? multiplier * current->startKM : current->start/60; // bottom left
case 1 : return allPlot->byDistance() ? multiplier * current->startKM : current->start/60; // top left
case 2 : return allPlot->byDistance() ? multiplier * current->stopKM : current->stop/60; // bottom right
case 3 : return allPlot->byDistance() ? multiplier * current->stopKM : current->stop/60; // bottom right
}
return 0; // shouldn't get here, but keeps compiler happy
}
double IntervalPlotData::y(size_t i) const
{
// which point are we returning?
switch (i%4) {
case 0 : return -100; // bottom left
case 1 : return 5000; // top left - set to out of bound value
case 2 : return 5000; // top right - set to out of bound value
case 3 : return -100; // bottom right
}
return 0;
}
size_t IntervalPlotData::size() const { return intervalCount()*4; }
QwtData *IntervalPlotData::copy() const {
return new IntervalPlotData(allPlot, mainWindow);
}