/* * Copyright (c) 2007-2008 Sean C. Rhea (srhea@srhea.net) * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation; either version 2 of the License, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., 51 * Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "FitRideFile.h" #include "Settings.h" #include "Units.h" #include #include #include #include #include #include #include #include #include #include #include #define FIT_DEBUG false // debug traces #ifndef MATHCONST_PI #define MATHCONST_PI 3.141592653589793238462643383279502884L /* pi */ #endif #define LAP_TYPE 19 #define RECORD_TYPE 20 #define SEGMENT_TYPE 142 static int fitFileReaderRegistered = RideFileFactory::instance().registerReader( "fit", "Garmin FIT", new FitFileReader()); static const QDateTime qbase_time(QDate(1989, 12, 31), QTime(0, 0, 0), Qt::UTC); //static double bearing = 0; // used to compute headwind depending on wind/cyclist bearing difference struct FitField { int num; int type; // FIT base_type int size; // in bytes }; struct FitDefinition { int global_msg_num; bool is_big_endian; std::vector fields; }; /* FIT has uint32 as largest integer type. So qint64 is large enough to * store all integer types - no matter if they're signed or not */ // this will need to change if float or other non-integer values are // introduced into the file format typedef qint64 fit_value_t; #define NA_VALUE std::numeric_limits::max() typedef std::string fit_string_value; enum fitValueType { SingleValue, DoubleValue, StringValue }; typedef enum fitValueType FitValueType; struct FitValue { FitValueType type; fit_value_t v; fit_value_t v2; fit_string_value s; }; struct FitFileReaderState { QFile &file; QStringList &errors; RideFile *rideFile; time_t start_time; time_t last_time; double last_distance; QMap local_msg_types; QSet unknown_record_fields, unknown_global_msg_nums, unknown_base_type; int interval; int calibration; int devices; bool stopped; bool isLapSwim; double pool_length; int last_event_type; int last_event; int last_msg_type; double frac_time; // to carry sub-second length time in pool swimming double last_lap_end; // to align laps for drill mode in pool swimming QVariant isGarminSmartRecording; QVariant GarminHWM; XDataSeries *weatherXdata; XDataSeries *swimXdata; QList deviceInfos; FitFileReaderState(QFile &file, QStringList &errors) : file(file), errors(errors), rideFile(NULL), start_time(0), last_time(0), last_distance(0.00f), interval(0), calibration(0), devices(0), stopped(true), isLapSwim(false), pool_length(0.0), last_event_type(-1), last_event(-1), last_msg_type(-1), frac_time(0.0), last_lap_end(0.0) {} struct TruncatedRead {}; void read_unknown( int size, int *count = NULL ) { if (!file.seek(file.pos() + size)) throw TruncatedRead(); if (count) (*count) += size; } fit_string_value read_text(int len, int *count = NULL) { char c; fit_string_value res = ""; for (int i = 0; i < len; ++i) { if (file.read(&c, 1) != 1) throw TruncatedRead(); if (count) *count += 1; if (c != 0) res += c; } return res; } fit_value_t read_int8(int *count = NULL) { qint8 i; if (file.read(reinterpret_cast( &i), 1) != 1) throw TruncatedRead(); if (count) (*count) += 1; return i == 0x7f ? NA_VALUE : i; } fit_value_t read_uint8(int *count = NULL) { quint8 i; if (file.read(reinterpret_cast( &i), 1) != 1) throw TruncatedRead(); if (count) (*count) += 1; return i == 0xff ? NA_VALUE : i; } fit_value_t read_uint8z(int *count = NULL) { quint8 i; if (file.read(reinterpret_cast( &i), 1) != 1) throw TruncatedRead(); if (count) (*count) += 1; return i == 0x00 ? NA_VALUE : i; } fit_value_t read_int16(bool is_big_endian, int *count = NULL) { qint16 i; if (file.read(reinterpret_cast(&i), 2) != 2) throw TruncatedRead(); if (count) (*count) += 2; i = is_big_endian ? qFromBigEndian( i ) : qFromLittleEndian( i ); return i == 0x7fff ? NA_VALUE : i; } fit_value_t read_uint16(bool is_big_endian, int *count = NULL) { quint16 i; if (file.read(reinterpret_cast(&i), 2) != 2) throw TruncatedRead(); if (count) (*count) += 2; i = is_big_endian ? qFromBigEndian( i ) : qFromLittleEndian( i ); return i == 0xffff ? NA_VALUE : i; } fit_value_t read_uint16z(bool is_big_endian, int *count = NULL) { quint16 i; if (file.read(reinterpret_cast(&i), 2) != 2) throw TruncatedRead(); if (count) (*count) += 2; i = is_big_endian ? qFromBigEndian( i ) : qFromLittleEndian( i ); return i == 0x0000 ? NA_VALUE : i; } fit_value_t read_int32(bool is_big_endian, int *count = NULL) { qint32 i; if (file.read(reinterpret_cast(&i), 4) != 4) throw TruncatedRead(); if (count) (*count) += 4; i = is_big_endian ? qFromBigEndian( i ) : qFromLittleEndian( i ); return i == 0x7fffffff ? NA_VALUE : i; } fit_value_t read_uint32(bool is_big_endian, int *count = NULL) { quint32 i; if (file.read(reinterpret_cast(&i), 4) != 4) throw TruncatedRead(); if (count) (*count) += 4; i = is_big_endian ? qFromBigEndian( i ) : qFromLittleEndian( i ); return i == 0xffffffff ? NA_VALUE : i; } fit_value_t read_uint32z(bool is_big_endian, int *count = NULL) { quint32 i; if (file.read(reinterpret_cast(&i), 4) != 4) throw TruncatedRead(); if (count) (*count) += 4; i = is_big_endian ? qFromBigEndian( i ) : qFromLittleEndian( i ); return i == 0x00000000 ? NA_VALUE : i; } void DumpFitValue(const FitValue& v) { printf("type: %d %llx %llx %s\n", v.type, v.v, v.v2, v.s.c_str()); } void convert2Run() { if (rideFile->areDataPresent()->cad) { foreach(RideFilePoint *pt, rideFile->dataPoints()) { pt->rcad = pt->cad; pt->cad = 0; } rideFile->setDataPresent(RideFile::rcad, true); rideFile->setDataPresent(RideFile::cad, false); } } QString getManuProd(int manu, int prod) { if (manu == 1) { // Garmin // Product IDs can be found in c/fit_example.h in the FIT SDK. // Multiple product IDs refer to different regions e.g. China, Japan etc. switch (prod) { case 473: case 474: case 475: case 494: return "Garmin FR301"; case 717: case 987: return "Garmin FR405"; case 782: return "Garmin FR50"; case 988: return "Garmin FR60"; case 1018: return "Garmin FR310XT"; case 1036: case 1199: case 1213: case 1387: return "Garmin Edge 500"; case 1124: case 1274: return "Garmin FR110"; case 1169: case 1333: case 1334: case 1386: return "Garmin Edge 800"; case 1325: return "Garmin Edge 200"; case 1328: return "Garmin FR910XT"; case 1345: case 1410: return "Garmin FR610"; case 1360: return "Garmin FR210"; case 1436: return "Garmin FR70"; case 1446: return "Garmin FR310XT 4T"; case 1482: case 1688: return "Garmin FR10"; case 1499: return "Garmin Swim"; case 1551: return "Garmin Fenix"; case 1561: case 1742: case 1821: return "Garmin Edge 510"; case 1567: return "Garmin Edge 810"; case 1623: return "Garmin FR620"; case 1632: return "Garmin FR220"; case 1765: case 2130: case 2131: case 2132: return "Garmin FR920XT"; case 1836: case 2052: case 2053: case 2070: case 2100: return "Garmin Edge 1000"; case 1903: return "Garmin FR15"; case 1967: return "Garmin Fenix2"; case 2050: case 2188: case 2189: return "Garmin Fenix3"; case 2067: case 2260: return "Garmin Edge 520"; case 2147: return "Garmin Edge 25"; case 2153: return "Garmin FR225"; case 2238: return "Garmin Edge 20"; case 20119: return "Garmin Training Center"; case 65532: return "Android ANT+ Plugin"; case 65534: return "Garmin Connect Website"; default: return QString("Garmin %1").arg(prod); } } else if (manu == 6 ) { // SRM // powercontrol now uses FIT files from PC8 switch (prod) { case 6: return "SRM PC6"; case 7: return "SRM PC7"; case 8: return "SRM PC8"; default: return "SRM Powercontrol"; } } else if (manu == 9 ) { // Powertap switch (prod) { case 14: return "Joule 2.0"; case 18: return "Joule"; case 19: return "Joule GPS"; case 22: return "Joule GPS+"; default: return QString("Powertap Device %1"); } } else if (manu == 32) { // wahoo switch (prod) { case 0: return "Wahoo fitness"; default: return QString("Wahoo fitness %1").arg(prod); } } else if (manu == 38) { // o_synce switch (prod) { case 1: return "o_synce navi2coach"; default: return QString("o_synce %1").arg(prod); } } else if (manu == 70) { // does not set product at this point return "Sigmasport ROX"; } else if (manu == 76) { // Moxy return "Moxy Monitor"; } else if (manu == 95) { // Stryd return "Stryd"; } else if (manu == 260) { // Zwift! return "Zwift"; } else { return QString("Unknown FIT Device %1:%2").arg(manu).arg(prod); } return "FIT (*.fit)"; } void decodeFileId(const FitDefinition &def, int, const std::vector& values) { int i = 0; int manu = -1, prod = -1; foreach(const FitField &field, def.fields) { fit_value_t value = values[i++].v; if( value == NA_VALUE ) continue; switch (field.num) { case 1: manu = value; break; case 2: prod = value; break; // other are ignored at present: case 0: // file type: // 4: activity log // 6: Itinary // 34: segment break; case 3: //serial number case 4: //timestamp case 5: //number default: ; // do nothing } } rideFile->setDeviceType(getManuProd(manu, prod)); } void decodeSession(const FitDefinition &def, int, const std::vector& values) { int i = 0; foreach(const FitField &field, def.fields) { fit_value_t value = values[i++].v; if( value == NA_VALUE ) continue; switch (field.num) { case 5: // sport field switch (value) { case 1: // running: rideFile->setTag("Sport","Run"); if (rideFile->dataPoints().count()>0) convert2Run(); break; default: // if we can't work it out, assume bike // but only if not already set to another sport, // Garmin Swim send 2 tags for example if (rideFile->getTag("Sport", "Bike") != "Bike") break; case 2: // cycling rideFile->setTag("Sport","Bike"); break; case 5: // swimming rideFile->setTag("Sport","Swim"); break; /* // other sports are ignored at present: case 0: // generic case 3: // transition case 4: // fitness_equipment case 6: // basketball case 7: // soccer case 8: // tennis case 9: // american_football case 10: // training case 11: // walking case 12: // cross_country_skiing case 13: // alpine_skiing case 14: // snowboarding case 15: // rowing case 16: // mountaineering case 17: // hiking case 18: // multisport case 19: // paddling case 254: // all */ } break; case 6: // sub sport (ignored at present) switch (value) { case 0: // generic case 1: // treadmill case 2: // street case 3: // trail case 4: // track case 5: // spin case 6: // home trainer case 7: // route case 8: // mountain case 9: // downhill case 10: // recumbent case 11: // cyclocross case 12: // hand_cycling case 13: // piste case 14: // indoor_rowing case 15: // elliptical case 254: // all default: break; } break; case 44: // pool_length pool_length = value / 100000.0; rideFile->setTag("Pool Length", // in meters QString("%1").arg(pool_length*1000.0)); break; // other fields are ignored at present case 253: //timestamp case 254: //index case 0: //event case 1: /* event_type */ case 2: /* start_time */ case 3: /* start_position_lat */ case 4: /* start_position_long */ case 7: /* total elapsed time */ case 8: /* total timer time */ case 9: /* total distance */ case 10: /* total_cycles */ case 11: /* total calories */ case 13: /* total fat calories */ case 14: /* avg_speed */ case 15: /* max_speed */ case 16: /* avg_HR */ case 17: /* max_HR */ case 18: /* avg_cad */ case 19: /* max_cad */ case 20: /* avg_pwr */ case 21: /* max_pwr */ case 22: /* total ascent */ case 23: /* total descent */ case 25: /* first lap index */ case 26: /* num lap */ case 29: /* north-east lat = bounding box */ case 30: /* north-east lon = bounding box */ case 31: /* south west lat = bounding box */ case 32: /* south west lon = bounding box */ case 34: /* normalized power */ case 48: /* total work (J) */ case 49: /* avg altitude */ case 50: /* max altitude */ case 52: /* avg grade */ case 53: /* avg positive grade */ case 54: /* avg negative grade */ case 55: /* max pos grade */ case 56: /* max neg grade */ case 57: /* avg temperature (Celsius. deg) */ case 58: /* max temp */ case 59: /* total_moving_time */ case 60: /* avg_pos_vertical_speed (m/s) */ case 61: /* avg_neg_vertical_speed */ case 62: /* max_pos_vertical_speed */ case 63: /* max neg_vertical_speed */ case 64: /* min HR bpm */ case 69: /* avg lap time */ case 70: /* best lap index */ case 71: /* min altitude */ case 92: /* fractional avg cadence (rpm) */ case 93: /* fractional max cadence */ default: ; // do nothing } if (FIT_DEBUG) { printf("decodeSession field %d: %d bytes, num %d, type %d\n", i, field.size, field.num, field.type ); } } } void decodeDeviceInfo(const FitDefinition &def, int, const std::vector& values) { int i = 0; int index=-1; int manu = -1, prod = -1, version = -1; QString deviceInfo; foreach(const FitField &field, def.fields) { fit_value_t value = values[i++].v; if( value == NA_VALUE ) continue; //qDebug() << field.num << value; switch (field.num) { case 0: // device index index = value; break; case 2: // manufacturer manu = value; break; case 4: // product prod = value; break; case 5: // software version version = value; break; // all oher fields are ignored at present case 253: //timestamp case 3: // serial number case 10: // battery voltage case 1: // ANT+ device type // details: 0x78 = HRM, 0x79 = Spd&Cad, 0x7A = Cad, 0x7B = Speed case 6: // hardware version case 11: // battery status case 22: // ANT network case 25: // source type case 24: // equipment ID default: ; // do nothing } if (FIT_DEBUG) { printf("decodeDeviceInfo field %d: %d bytes, num %d, type %d\n", i, field.size, field.num, field.type ); } } deviceInfo += getManuProd(manu, prod) + QString(" Version %1\n").arg(version/100.0); if (index == 0) { // keep only the first device now if (deviceInfos.count()>index) deviceInfos.replace(index, deviceInfo); else deviceInfos.append(deviceInfo); } } void decodeEvent(const FitDefinition &def, int, const std::vector& values) { int time = -1; int event = -1; int event_type = -1; qint16 data16 = -1; int i = 0; foreach(const FitField &field, def.fields) { fit_value_t value = values[i++].v; if( value == NA_VALUE ) continue; switch (field.num) { case 253: // timestamp field (s) time = value + qbase_time.toTime_t(); break; case 0: // event field event = value; break; case 1: // event_type field event_type = value; break; case 2: // data16 field data16 = value; break; // additional values (ignored at present): case 3: //data case 4: // event group default: ; // do nothing } } switch (event) { case 0: // Timer event { switch (event_type) { case 0: // start stopped = false; break; case 1: // stop stopped = true; break; case 2: // consecutive_depreciated case 3: // marker break; case 4: // stop all stopped = true; break; case 5: // begin_depreciated case 6: // end_depreciated case 7: // end_all_depreciated case 8: // stop_disable stopped = true; break; case 9: // stop_disable_all stopped = true; break; default: errors << QString("Unknown timer event type %1").arg(event_type); } } break; case 36: // Calibration event { int secs = (start_time==0?0:time-start_time); switch (event_type) { case 3: // marker ++calibration; rideFile->addCalibration(secs, data16, QString("Calibration %1 (%2)").arg(calibration).arg(data16)); //qDebug() << "marker" << secs << data16; break; default: errors << QString("Unknown calibration event type %1").arg(event_type); break; } } break; case 3: /* workout */ case 4: /* workout_step */ case 5: /* power_down */ case 6: /* power_up */ case 7: /* off_course */ case 8: /* session */ case 9: /* lap */ case 10: /* course_point */ case 11: /* battery */ case 12: /* virtual_partner_pace */ case 13: /* hr_high_alert */ case 14: /* hr_low_alert */ case 15: /* speed_high_alert */ case 16: /* speed_low_alert */ case 17: /* cad_high_alert */ case 18: /* cad_low_alert */ case 19: /* power_high_alert */ case 20: /* power_low_alert */ case 21: /* recovery_hr */ case 22: /* battery_low */ case 23: /* time_duration_alert */ case 24: /* distance_duration_alert */ case 25: /* calorie_duration_alert */ case 26: /* activity */ case 27: /* fitness_equipment */ case 28: /* length */ case 32: /* user_marker */ case 33: /* sport_point */ case 42: /* front_gear_change */ case 43: /* rear_gear_change */ default: ; } if (FIT_DEBUG) { printf("event type %d\n", event_type); } last_event = event; last_event_type = event_type; } void decodeLap(const FitDefinition &def, int time_offset, const std::vector& values) { time_t time = 0; if (time_offset > 0) time = last_time + time_offset; else time = last_time; int i = 0; time_t this_start_time = 0; double total_distance = 0.0; if (FIT_DEBUG) { printf( " FIT decode lap \n"); } foreach(const FitField &field, def.fields) { const FitValue& value = values[i++]; if( value.v == NA_VALUE ) continue; if (FIT_DEBUG) { printf ("\tfield: num: %d ", field.num); DumpFitValue(value); } switch (field.num) { case 253: time = value.v + qbase_time.toTime_t(); break; case 2: this_start_time = value.v + qbase_time.toTime_t(); break; case 9: total_distance = value.v / 100000.0; break; // other data (ignored at present): case 254: // lap nbr case 3: // start_position_lat case 4: // start_position_lon case 5: // end_position_lat case 6: // end_position_lon case 7: // total_elapsed_time = value.v / 1000.0; case 8: // total_timer_time case 10: // total_cycles case 11: // total calories case 12: // total fat calories case 13: // avg_speed case 14: // max_speed case 15: // avg HR (bpm) case 16: // Max HR case 17: // AvCad case 18: // MaxCad case 21: // total ascent case 22: // total descent case 27: // north-east lat (bounding box) case 28: // north-east lon case 29: // south west lat case 30: // south west lon break; default: ; // ignore it } } if (this_start_time == 0 || this_start_time-start_time < 0) { //errors << QString("lap %1 has invalid start time").arg(interval); this_start_time = start_time; // time was corrected after lap start if (time == 0 || time-start_time < 0) { errors << QString("lap %1 is ignored (invalid end time)").arg(interval); return; } } if (isLapSwim) { // Fill empty laps due to false starts or pauses in some devices // s.t. Garmin 910xt double secs = time - start_time; if ((total_distance == 0.0) && (secs > last_time + 1) && (isGarminSmartRecording.toInt() != 0) && (secs - last_time < 100*GarminHWM.toInt())) { double deltaSecs = secs - last_time; for (int i = 1; i <= deltaSecs; i++) { rideFile->appendPoint( last_time+i, 0.0, 0.0, last_distance, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, RideFile::NA, RideFile::NA, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, interval); } last_time += deltaSecs; } ++interval; } else if (rideFile->dataPoints().count()) { // no samples means no laps ++interval; rideFile->addInterval(RideFileInterval::DEVICE, this_start_time - start_time, time - start_time, QObject::tr("Lap %1").arg(interval)); } } void decodeRecord(const FitDefinition &def, int time_offset, const std::vector& values) { if (isLapSwim) return; // We use the length message for Lap Swimming time_t time = 0; if (time_offset > 0) time = last_time + time_offset; double alt = 0, cad = 0, km = 0, hr = 0, lat = 0, lng = 0, badgps = 0, lrbalance = RideFile::NA; double kph = 0, temperature = RideFile::NA, watts = 0, slope = 0; double leftTorqueEff = 0, rightTorqueEff = 0, leftPedalSmooth = 0, rightPedalSmooth = 0; double leftPedalCenterOffset = 0; double rightPedalCenterOffset = 0; double leftTopDeathCenter = 0; double rightTopDeathCenter = 0; double leftBottomDeathCenter = 0; double rightBottomDeathCenter = 0; double leftTopPeakPowerPhase = 0; double rightTopPeakPowerPhase = 0; double leftBottomPeakPowerPhase = 0; double rightBottomPeakPowerPhase = 0; double rvert = 0, rcad = 0, rcontact = 0; double smO2 = 0, tHb = 0; //bool run=false; fit_value_t lati = NA_VALUE, lngi = NA_VALUE; int i = 0; foreach(const FitField &field, def.fields) { fit_value_t value = values[i].v; fit_value_t value2 = values[i++].v2; if( value == NA_VALUE ) continue; switch (field.num) { case 253: // TIMESTAMP time = value + qbase_time.toTime_t(); // Time MUST NOT go backwards // You canny break the laws of physics, Jim if (time < last_time) time = last_time; break; case 0: // POSITION_LAT lati = value; break; case 1: // POSITION_LONG lngi = value; break; case 2: // ALTITUDE alt = value / 5.0 - 500.0; break; case 3: // HEART_RATE hr = value; break; case 4: // CADENCE if (rideFile->getTag("Sport", "Bike") == "Run") rcad = value; else cad = value; break; case 5: // DISTANCE km = value / 100000.0; break; case 6: // SPEED kph = value * 3.6 / 1000.0; break; case 7: // POWER watts = value; break; case 8: break; // packed speed/dist case 9: // GRADE slope = value / 100.0; break; case 10: //resistance = value; break; case 11: //time_from_course = value / 1000.0; break; case 12: break; // "cycle_length" case 13: // TEMPERATURE temperature = value; break; case 29: // ACCUMULATED_POWER break; case 30: //LEFT_RIGHT_BALANCE lrbalance = (value & 0x80 ? 100 - (value & 0x7F) : value & 0x7F); break; case 31: // GPS Accuracy break; case 39: // VERTICAL OSCILLATION rvert = value / 100.0f; break; //case 40: // ACTIVITY_TYPE // // TODO We should know/test value for run // run = true; // break; case 41: // GROUND CONTACT TIME rcontact = value / 10.0f; break; case 43: // LEFT_TORQUE_EFFECTIVENESS leftTorqueEff = value / 2.0; break; case 44: // RIGHT_TORQUE_EFFECTIVENESS rightTorqueEff = value / 2.0; break; case 45: // LEFT_PEDAL_SMOOTHNESS leftPedalSmooth = value / 2.0; break; case 46: // RIGHT_PEDAL_SMOOTHNESS rightPedalSmooth = value / 2.0; break; case 47: // COMBINED_PEDAL_SMOOTHNES //qDebug() << "COMBINED_PEDAL_SMOOTHNES" << value; break; case 53: // RUNNING CADENCE FRACTIONAL VALUE break; case 54: // tHb tHb= value/100.0f; break; case 57: // SMO2 smO2= value/10.0f; break; case 61: // ? GPS Altitude ? or atmospheric pressure ? break; case 66: // ?? break; case 67: // ? Left Platform Center Offset ? leftPedalCenterOffset = value; break; case 68: // ? Right Platform Center Offset ? rightPedalCenterOffset = value; break; case 69: // ? Left Power Phase ? leftTopDeathCenter = round(value * 360.0/256); leftBottomDeathCenter = round(value2 * 360.0/256); break; case 70: // ? Left Peak Phase ? leftTopPeakPowerPhase = round(value * 360.0/256); leftBottomPeakPowerPhase = round(value2 * 360.0/256); break; case 71: // ? Right Power Phase ? rightTopDeathCenter = round(value * 360.0/256); rightBottomDeathCenter = round(value2 * 360.0/256); break; case 72: // ? Right Peak Phase ? rightTopPeakPowerPhase = round(value * 360.0/256); rightBottomPeakPowerPhase = round(value2 * 360.0/256); break; default: unknown_record_fields.insert(field.num); } } if (time == last_time) return; // Sketchy, but some FIT files do this. if (stopped) { // As it turns out, this happens all the time in some FIT files. // Since we don't really understand the meaning, don't make noise. /* errors << QString("At %1 seconds, time is stopped, but got record " "anyway. Ignoring it. Last event type was " "%2 for event %3.").arg(time-start_time).arg(last_event_type).arg(last_event); return; */ } if (lati != NA_VALUE && lngi != NA_VALUE) { lat = lati * 180.0 / 0x7fffffff; lng = lngi * 180.0 / 0x7fffffff; } else { // If lat/lng are missng, set to 0/0 and fill point from last point as 0/0) lat = 0; lng = 0; badgps = 1; } if (start_time == 0) { start_time = time - 1; // recording interval? QDateTime t; t.setTime_t(start_time); rideFile->setStartTime(t); } //printf( "point time=%d lat=%.2lf lon=%.2lf alt=%.1lf hr=%.0lf " // "cad=%.0lf km=%.1lf kph=%.1lf watts=%.0lf grade=%.1lf " // "resist=%.1lf off=%.1lf temp=%.1lf\n", // time, lat, lng, alt, hr, // cad, km, kph, watts, grade, // resistance, time_from_course, temperature ); double secs = time - start_time; double nm = 0; // compute bearing in order to calculate headwind // XXif ((!rideFile->dataPoints().empty()) && (last_time != 0)) // XX{ // XX RideFilePoint *prevPoint = rideFile->dataPoints().back(); // XX // ensure a movement occurred and valid lat/lon in order to compute cyclist direction // XX if ( (prevPoint->lat != lat || prevPoint->lon != lng ) // XX && (prevPoint->lat != 0 || prevPoint->lon != 0 ) // XX && (lat != 0 || lng != 0 ) ) // XX bearing = atan2(cos(lat)*sin(lng - prevPoint->lon), // XX cos(prevPoint->lat)*sin(lat)-sin(prevPoint->lat)*cos(lat)*cos(lng - prevPoint->lon)); // XX} // XXelse keep previous bearing or 0 at beginning // XXdouble headwind = cos(bearing - rideFile->windHeading()) * rideFile->windSpeed() + kph; double headwind = 0; int interval = 0; // if there are data points && a time difference > 1sec && smartRecording processing is requested at all if ((!rideFile->dataPoints().empty()) && (last_time != 0) && (time > last_time + 1) && (isGarminSmartRecording.toInt() != 0)) { // Handle smart recording if configured in preferences. Linearly interpolate missing points. RideFilePoint *prevPoint = rideFile->dataPoints().back(); double deltaSecs = (secs - prevPoint->secs); //assert(deltaSecs == secs - prevPoint->secs); // no fractional part -- don't CRASH FFS, be graceful // This is only true if the previous record was of type record: //assert(deltaSecs == time - last_time); -- don't CRASH FFS, be graceful // If the last lat/lng was missing (0/0) then all points up to lat/lng are marked as 0/0. if (prevPoint->lat == 0 && prevPoint->lon == 0 ) { badgps = 1; } double deltaCad = cad - prevPoint->cad; double deltaHr = hr - prevPoint->hr; double deltaDist = km - prevPoint->km; if (km < 0.00001) deltaDist = 0.000f; // effectively zero distance double deltaSpeed = kph - prevPoint->kph; double deltaTorque = nm - prevPoint->nm; double deltaPower = watts - prevPoint->watts; double deltaAlt = alt - prevPoint->alt; double deltaLon = lng - prevPoint->lon; double deltaLat = lat - prevPoint->lat; //XX double deltaHeadwind = headwind - prevPoint->headwind; double deltaSlope = slope - prevPoint->slope; double deltaLeftRightBalance = lrbalance - prevPoint->lrbalance; double deltaLeftTE = leftTorqueEff - prevPoint->lte; double deltaRightTE = rightTorqueEff - prevPoint->rte; double deltaLeftPS = leftPedalSmooth - prevPoint->lps; double deltaRightPS = rightPedalSmooth - prevPoint->rps; double deltaLeftPedalCenterOffset = leftPedalCenterOffset - prevPoint->lpco; double deltaRightPedalCenterOffset = rightPedalCenterOffset - prevPoint->rpco; double deltaLeftTopDeathCenter = leftTopDeathCenter - prevPoint->lppb; double deltaRightTopDeathCenter = rightTopDeathCenter - prevPoint->rppb; double deltaLeftBottomDeathCenter = leftBottomDeathCenter - prevPoint->lppe; double deltaRightBottomDeathCenter = rightBottomDeathCenter - prevPoint->rppe; double deltaLeftTopPeakPowerPhase = leftTopPeakPowerPhase - prevPoint->lpppb; double deltaRightTopPeakPowerPhase = rightTopPeakPowerPhase - prevPoint->rpppb; double deltaLeftBottomPeakPowerPhase = leftBottomPeakPowerPhase - prevPoint->lpppe; double deltaRightBottomPeakPowerPhase = rightBottomPeakPowerPhase - prevPoint->rpppe; double deltaSmO2 = smO2 - prevPoint->smo2; double deltaTHb = tHb - prevPoint->thb; double deltarvert = rvert - prevPoint->rvert; double deltarcad = rcad - prevPoint->rcad; double deltarcontact = rcontact - prevPoint->rcontact; // only smooth the maximal smart recording gap defined in preferences - we don't want to crash / stall on bad // or corrupt files if (deltaSecs > 0 && deltaSecs < GarminHWM.toInt()) { for (int i = 1; i < deltaSecs; i++) { double weight = i /deltaSecs; rideFile->appendPoint( prevPoint->secs + (deltaSecs * weight), prevPoint->cad + (deltaCad * weight), prevPoint->hr + (deltaHr * weight), prevPoint->km + (deltaDist * weight), prevPoint->kph + (deltaSpeed * weight), prevPoint->nm + (deltaTorque * weight), prevPoint->watts + (deltaPower * weight), prevPoint->alt + (deltaAlt * weight), (badgps == 1) ? 0 : prevPoint->lon + (deltaLon * weight), (badgps == 1) ? 0 : prevPoint->lat + (deltaLat * weight), 0.0, // headwind prevPoint->slope + (deltaSlope * weight), temperature, prevPoint->lrbalance + (deltaLeftRightBalance * weight), prevPoint->lte + (deltaLeftTE * weight), prevPoint->rte + (deltaRightTE * weight), prevPoint->lps + (deltaLeftPS * weight), prevPoint->rps + (deltaRightPS * weight), prevPoint->lpco + (deltaLeftPedalCenterOffset * weight), prevPoint->rpco + (deltaRightPedalCenterOffset * weight), prevPoint->lppb + (deltaLeftTopDeathCenter * weight), prevPoint->rppb + (deltaRightTopDeathCenter * weight), prevPoint->lppe + (deltaLeftBottomDeathCenter * weight), prevPoint->rppe + (deltaRightBottomDeathCenter * weight), prevPoint->lpppb + (deltaLeftTopPeakPowerPhase * weight), prevPoint->rpppb + (deltaRightTopPeakPowerPhase * weight), prevPoint->lpppe + (deltaLeftBottomPeakPowerPhase * weight), prevPoint->rpppe + (deltaRightBottomPeakPowerPhase * weight), prevPoint->smo2 + (deltaSmO2 * weight), prevPoint->thb + (deltaTHb * weight), prevPoint->rvert + (deltarvert * weight), prevPoint->rcad + (deltarcad * weight), prevPoint->rcontact + (deltarcontact * weight), 0.0, // tcore interval); } } } if (km < 0.00001f) km = last_distance; rideFile->appendPoint(secs, cad, hr, km, kph, nm, watts, alt, lng, lat, headwind, slope, temperature, lrbalance, leftTorqueEff, rightTorqueEff, leftPedalSmooth, rightPedalSmooth, leftPedalCenterOffset, rightPedalCenterOffset, leftTopDeathCenter, rightTopDeathCenter, leftBottomDeathCenter, rightBottomDeathCenter, leftTopPeakPowerPhase, rightTopPeakPowerPhase, leftBottomPeakPowerPhase, rightBottomPeakPowerPhase, smO2, tHb, rvert, rcad, rcontact, 0.0, interval); last_time = time; last_distance = km; } void decodeLength(const FitDefinition &def, int time_offset, const std::vector& values) { if (!isLapSwim) { isLapSwim = true; // reset rideFile if not empty if (!rideFile->dataPoints().empty()) { start_time = 0; last_time = 0; last_distance = 0.00f; interval = 1; QString deviceType = rideFile->deviceType(); delete rideFile; rideFile = new RideFile; rideFile->setDeviceType(deviceType); rideFile->setRecIntSecs(1.0); } } time_t time = 0; if (time_offset > 0) time = last_time + time_offset; double cad = 0, km = 0, kph = 0; int length_type = 0; int swim_stroke = 0; int total_strokes = 0; double length_duration = 0.0; int i = 0; foreach(const FitField &field, def.fields) { fit_value_t value = values[i++].v; if( value == NA_VALUE ) continue; switch (field.num) { case 0: // event if (FIT_DEBUG) qDebug() << " event:" << value; break; case 1: // event type if (FIT_DEBUG) qDebug() << " event_type:" << value; break; case 2: // start time time = value + qbase_time.toTime_t(); // Time MUST NOT go backwards // You canny break the laws of physics, Jim if (time < last_time) time = last_time; break; case 3: // total elapsed time length_duration = value / 1000.0; break; case 4: // total timer time if (FIT_DEBUG) qDebug() << " total_timer_time:" << value; break; case 5: // total strokes total_strokes = value; break; case 6: // avg speed kph = value * 3.6 / 1000.0; break; case 7: // swim stroke: 0-free, 1-back, 2-breast, 3-fly, // 4-drill, 5-mixed, 6-IM swim_stroke = value; break; case 9: // cadence cad = value; break; case 11: // total_calories if (FIT_DEBUG) qDebug() << " total_calories:" << value; break; case 12: // length type: 0-rest, 1-strokes length_type = value; break; case 254: // message_index if (FIT_DEBUG) qDebug() << " message_index:" << value; break; default: unknown_record_fields.insert(field.num); } } XDataPoint *p = new XDataPoint(); p->secs = last_time; p->km = last_distance; p->number[0] = length_type + swim_stroke; p->number[1] = length_duration; p->number[2] = total_strokes; swimXdata->datapoints.append(p); // Rest interval if (!length_type) { kph = 0.0; cad = 0.0; } if (time == last_time) return; // Sketchy, but some FIT files do this. if (start_time == 0) { start_time = time - 1; // recording interval? QDateTime t; t.setTime_t(start_time); rideFile->setStartTime(t); interval = 1; } // Normalize distance for the most common pool lengths, // this is a hack to avoid the need for a double pass when // pool_length comes in Session message at the end of the file. if (pool_length == 0.0) { pool_length = kph*length_duration/3600; if (fabs(pool_length - 0.050) < 0.004) pool_length = 0.050; else if (fabs(pool_length - 0.033) < 0.003) pool_length = 0.033; else if (fabs(pool_length - 0.025) < 0.002) pool_length = 0.025; else if (fabs(pool_length - 0.025*METERS_PER_YARD) < 0.002) pool_length = 0.025*METERS_PER_YARD; else if (fabs(pool_length - 0.020) < 0.002) pool_length = 0.020; } // another pool length or pause km = last_distance + (length_type ? pool_length : 0.0); // Adjust length duration using fractional carry length_duration += frac_time; frac_time = modf(length_duration, &length_duration); // only fill 100x the maximal smart recording gap defined // in preferences - we don't want to crash / stall on bad // or corrupt files if ((isGarminSmartRecording.toInt() != 0) && length_duration > 0 && length_duration < 100*GarminHWM.toInt()) { double deltaSecs = length_duration; double deltaDist = km - last_distance; kph = 3600.0 * deltaDist / deltaSecs; for (int i = 1; i <= deltaSecs; i++) { rideFile->appendPoint( last_time + i, cad, 0.0, last_distance + (deltaDist * i/deltaSecs), kph, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, RideFile::NA,RideFile::NA, 0.0, 0.0,0.0, 0.0, 0.0, 0.0, 0.0, 0.0,0.0, 0.0, 0.0, 0.0,0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, interval); } last_time += deltaSecs; last_distance += deltaDist; } } /* weather broadcast as observed at weather station (undocumented) */ void decodeWeather(const FitDefinition &def, int time_offset, const std::vector& values) { Q_UNUSED(time_offset); time_t time = 0; if (time_offset > 0) time = last_time + time_offset; double windHeading = 0.0, windSpeed = 0.0, temp = 0.0, humidity = 0.0; int i = 0; foreach(const FitField &field, def.fields) { fit_value_t value = values[i++].v; if( value == NA_VALUE ) continue; switch (field.num) { case 253: // Timestamp time = value + qbase_time.toTime_t(); break; case 8: // Weather station name // ignored break; case 9: // Weather observation timestamp // ignored break; case 10: // Weather station latitude // ignored break; case 11: // Weather station longitude // ignored break; case 3: // Wind heading (0deg=North) windHeading = value ; // 180.0 * MATHCONST_PI; rideFile->setWindHeading(value / 180.0 * MATHCONST_PI); break; case 4: // Wind speed (mm/s) windSpeed = value * 0.0036; rideFile->setWindSpeed(value * 0.0036); break; case 1: // Temperature temp = value; break; case 7: // Humidity humidity = value; break; default: ; // ignore it } } double secs = time - start_time; XDataPoint *p = new XDataPoint(); p->secs = secs; p->km = last_distance; p->number[0] = windSpeed; p->number[1] = windHeading; p->number[2] = temp; p->number[3] = humidity; weatherXdata->datapoints.append(p); } void decodeDeviceSettings(const FitDefinition &def, int time_offset, const std::vector& values) { Q_UNUSED(time_offset); int i = 0; foreach(const FitField &field, def.fields) { fit_value_t value = values[i++].v; if( value == NA_VALUE ) continue; switch (field.num) { case 0: // Active timezone // ignored break; case 1: // UTC offset // ignored break; case 5: // timezone offset // ignored break; default: ; // ignore it } } } void decodeSegment(const FitDefinition &def, int time_offset, const std::vector& values) { time_t time = 0; if (time_offset > 0) time = last_time + time_offset; else time = last_time; int i = 0; time_t this_start_time = 0; ++interval; double total_elapsed_time = 0.0; double total_distance = 0.0; QString segment_name; foreach(const FitField &field, def.fields) { const FitValue& value = values[i++]; if( value.type != StringValue && value.v == NA_VALUE ) continue; if (FIT_DEBUG) { printf ("\tfield: num: %d ", field.num); DumpFitValue(value); } switch (field.num) { case 253: // Message timestamp time = value.v + qbase_time.toTime_t(); break; case 2: // start timestamp ? this_start_time = value.v + qbase_time.toTime_t(); break; case 3: // start latitude // ignored break; case 4: // start longitude // ignored break; case 5: // end latitude // ignored break; case 6: // end longitude // ignored break; case 7: // personal best (ms) ? segment elapsed time from this activity (ms) ? // => depends on file / device / version ? // FIXME: to be investigated/confirmed. total_elapsed_time = round(value.v / 1000.0); break; case 8: // challenger best (ms) ? segment total timer time from this activity (ms) ? // => depends on file / device / version ? // FIXME: to be investigated/confirmed. // ignored break; case 9: // leader best (ms) ? segment distance ? FIXME : to be investigated. // => depends on file / device / version ? total_distance = value.v / 100000.0; break; case 10: // personal rank ? to be confirmed // ignored break; case 25: // north-east latitude (bounding box) // ignored break; case 26: // north-east longitude // ignored break; case 27: // south-west latitude // ignored break; case 28: // south-west longitude // ignored break; case 29: // Segment name segment_name = QString(value.s.c_str()); if (FIT_DEBUG) { printf("Found segment name: %s\n", segment_name.toStdString().c_str()); } break; case 33: /* undocumented, ignored */ break; case 71: /* undocumented, ignored */ break; case 75: /* undocumented, ignored */ break; case 76: /* undocumented, ignored */ break; case 77: /* undocumented, ignored */ break; case 78: /* undocumented, ignored */ break; case 79: /* undocumented, ignored */ break; case 80: /* undocumented, ignored */ break; case 254: /* message counter idx, ignored */ break; case 11: /* undocumented, ignored */ break; case 12: /* undocumented, ignored */ break; case 13: /* undocumented, ignored */ break; case 14: /* undocumented, ignored */ break; case 19: /* undocumented, ignored */ break; case 20: /* undocumented, ignored */ break; case 21: /* total ascent ? ignored */ break; case 22: /* total descent ? ignored */ break; case 30: /* undocumented, ignored */ break; case 31: /* undocumented, ignored */ break; case 69: /* undocumented, ignored */ break; case 70: /* undocumented, ignored */ break; case 72: /* undocumented, ignored */ break; case 0: /* undocumented, ignored */ break; case 1: /* undocumented, ignored */ break; case 15: /* undocumented (HR?), ignored */ break; case 16: /* undocumented (HR?), ignored */ break; case 17: /* undocumented (cadence?), ignored */ break; case 18: /* undocumented (cadence?), ignored */ break; case 23: /* undocumented, ignored */ break; case 24: /* undocumented, ignored */ break; case 32: /* undocumented, ignored */ break; case 58: /* undocumented, ignored */ break; case 59: /* undocumented, ignored */ break; case 60: /* undocumented, ignored */ break; case 61: /* undocumented, ignored */ break; case 62: /* undocumented, ignored */ break; case 63: /* undocumented, ignored */ break; case 64: /* undocumented, ignored */ break; case 65: // Segment UID // ignored break; case 66: /* undocumented, ignored */ break; case 67: /* undocumented, ignored */ break; case 68: /* undocumented, ignored */ break; case 73: /* undocumented, ignored */ break; case 74: /* undocumented, ignored */ break; case 81: /* undocumented, ignored */ break; case 82: /* undocumented, ignored */ break; default: ; // ignore it } } if (this_start_time == 0 || this_start_time-start_time < 0) { //errors << QString("lap %1 has invalid start time").arg(interval); this_start_time = start_time; // time was corrected after lap start if (time == 0 || time-start_time < 0) { errors << QString("lap %1 is ignored (invalid end time)").arg(interval); return; } } if (rideFile->dataPoints().count()) { // no samples means no laps.. if (segment_name == "") { segment_name = QObject::tr("Lap %1").arg(interval); } if (isLapSwim && total_elapsed_time > 0.0) { rideFile->addInterval(RideFileInterval::DEVICE, this_start_time - start_time, this_start_time - start_time + total_elapsed_time, segment_name); } else { rideFile->addInterval(RideFileInterval::DEVICE, this_start_time - start_time, time - start_time, segment_name); } } } int read_record(bool &stop, QStringList &errors) { stop = false; int count = 0; int header_byte = read_uint8(&count); if (!(header_byte & 0x80) && (header_byte & 0x40)) { // Definition record int local_msg_type = header_byte & 0xf; local_msg_types.insert(local_msg_type, FitDefinition()); FitDefinition &def = local_msg_types[local_msg_type]; int reserved = read_uint8(&count); (void) reserved; // unused def.is_big_endian = read_uint8(&count); def.global_msg_num = read_uint16(def.is_big_endian, &count); int num_fields = read_uint8(&count); if (FIT_DEBUG) { printf("definition: local type=%d global=%d arch=%d fields=%d\n", local_msg_type, def.global_msg_num, def.is_big_endian, num_fields ); } for (int i = 0; i < num_fields; ++i) { def.fields.push_back(FitField()); FitField &field = def.fields.back(); field.num = read_uint8(&count); field.size = read_uint8(&count); int base_type = read_uint8(&count); field.type = base_type & 0x1f; if (FIT_DEBUG) { printf(" field %d: %d bytes, num %d, type %d, size %d\n", i, field.size, field.num, field.type, field.size ); } } } else { // Data record int local_msg_type = 0; int time_offset = 0; if (header_byte & 0x80) { // compressed time record local_msg_type = (header_byte >> 5) & 0x3; time_offset = header_byte & 0x1f; } else { local_msg_type = header_byte & 0xf; } if (!local_msg_types.contains(local_msg_type)) { errors << QString("local type %1 without previous definition").arg(local_msg_type); stop = true; return count; } const FitDefinition &def = local_msg_types[local_msg_type]; if (FIT_DEBUG) { printf( "read_record message local=%d global=%d\n", local_msg_type, def.global_msg_num ); } std::vector values; foreach(const FitField &field, def.fields) { FitValue value; int size; switch (field.type) { case 0: value.type = SingleValue; value.v = read_uint8(&count); size = 1; break; case 1: value.type = SingleValue; value.v = read_int8(&count); size = 1; break; case 2: value.type = SingleValue; value.v = read_uint8(&count); size = 1; // Multi-values ? if (field.size>size) { value.type = DoubleValue; value.v2 = read_uint8(&count); size = 2; } break; case 3: value.type = SingleValue; value.v = read_int16(def.is_big_endian, &count); size = 2; break; case 4: value.type = SingleValue; value.v = read_uint16(def.is_big_endian, &count); size = 2; // Multi-values ? if (field.size>size) { value.type = DoubleValue; value.v2 = read_uint16(def.is_big_endian, &count); size = 4; } break; case 5: value.type = SingleValue; value.v = read_int32(def.is_big_endian, &count); size = 4; break; case 6: value.type = SingleValue; value.v = read_uint32(def.is_big_endian, &count); size = 4; break; case 7: value.type = StringValue; value.s = read_text(field.size, &count); size = field.size; break; //case 8: // FLOAT32 //case 9: // FLOAT64 case 10: value.type = SingleValue; value.v = read_uint8z(&count); size = 1; break; case 11: value.type = SingleValue; value.v = read_uint16z(def.is_big_endian, &count); size = 2; break; case 12: value.type = SingleValue; value.v = read_uint32z(def.is_big_endian, &count); size = 4; break; //case 13: // BYTE // we may need to add support for float, string + byte base types here default: if (FIT_DEBUG) { // TODO: Dump raw data. printf("unknown type: %d size: %d \n", field.type, field.size); } read_unknown( field.size, &count ); value.type = SingleValue; value.v = NA_VALUE; unknown_base_type.insert(field.num); size = field.size; } // Quick fix : we need to support multivalues if (size < field.size) { if (FIT_DEBUG) { printf( " warning : size=%d for size=%d (num=%d)\n", field.size, field.type, field.num); } read_unknown( field.size-size, &count ); } values.push_back(value); if (FIT_DEBUG) { printf( " field: type=%d num=%d ", field.type, field.num); if (value.type == SingleValue) printf( "value=%lld\n", value.v ); else if (value.type == DoubleValue) printf( "value=%lld value2=%lld\n", value.v, value.v2 ); else if (value.type == StringValue) printf( "value=%s\n", value.s.c_str() ); } } // Most of the record types in the FIT format aren't actually all // that useful. FileId, Lap, and Record clearly are. The one // other one that might be useful is DeviceInfo, but it doesn't // seem to be filled in properly. Sean's Cinqo, for example, // shows up as manufacturer #65535, even though it should be #7. switch (def.global_msg_num) { case 0: decodeFileId(def, time_offset, values); break; case 18: decodeSession(def, time_offset, values); break; /* session */ case LAP_TYPE: // #19 decodeLap(def, time_offset, values); break; case RECORD_TYPE: // #20 decodeRecord(def, time_offset, values); break; case 21: decodeEvent(def, time_offset, values); break; case 23: //decodeDeviceInfo(def, time_offset, values); /* device info */ break; case 101: decodeLength(def, time_offset, values); break; /* lap swimming */ case 128: decodeWeather(def, time_offset, values); break; /* weather broadcast */ case 1: /* capabilities, device settings and timezone */ break; case 2: decodeDeviceSettings(def, time_offset, values); break; case 3: /* USER_PROFILE */ case 4: /* hrm profile */ case 5: /* sdm profile */ case 6: /* bike profile */ case 7: /* ZONES_TARGET field#1 = MaxHR (bpm) */ case 8: /* HR_ZONE */ case 9: /* POWER_ZONE */ case 10: /* MET_ZONE */ case 12: /* SPORT */ case 13: /* unknown */ case 15: /* goal */ case 22: /* source (undocumented) = sensors used for records ; see details below: */ /* #253: timestamp / #0: SPD/DIST / #1: SPD/DIST / #2: cadence / #4: HRM / #5: HRM */ case 26: /* workout */ case 27: /* workout step */ case 28: /* schedule */ case 29: /* location */ case 30: /* weight scale */ case 31: /* course */ case 32: /* course point */ case 33: /* totals */ case 34: /* activity */ case 35: /* software */ case 37: /* file capabilities */ case 38: /* message capabilities */ case 39: /* field capabilities */ case 49: /* file creator, software version ; see details below: */ /* #0: software version / #1: hardware version */ case 51: /* blood pressure */ case 53: /* speed zone */ case 55: /* monitoring */ case 72: /* training file (undocumented) : new since garmin 800 */ case 78: /* hrv */ case 79: /* HR zone (undocumented) ; see details below: */ /* #253: timestamp / #1: default Min HR / #2: default Max HR / #5: user Min HR / #6: user Max HR */ case 103: /* monitoring info */ case 104: /* battery */ case 105: /* pad */ case 106: /* salve device */ case 113: /* unknown */ case 125: /* unknown */ case 131: /* cadence zone */ case 140: /* unknown */ case 141: /* unknown */ break; case SEGMENT_TYPE: // #142 decodeSegment(def, time_offset, values); /* segment data */ break; case 145: /* memo glob */ case 147: /* equipment (undocumented) = sensors presets (sensor name, wheel circumference, etc.) ; see details below: */ /* #0: equipment ID / #2: equipment name / #10: default wheel circ. value / #21: user wheel circ. value / #254: local eqt idx */ case 148: /* segment description & metadata (undocumented) ; see details below: */ /* #0: segment name (string) / #1: segment UID (string) / #2: unknown, seems to be always 2 (enum) / #3: unknown, seems to be always 1 (enum) / #4: exporting_user_id ? =user ID from connect ? (uint32) / #6: unknown, seems to be always 0 */ case 149: /* segment leaderboard (undocumented) ; see details below: */ /* #1: who (0=segment leader, 1=personal best, 2=connection, 3=group leader, 4=challenger, 5+=H) / #3: ID of source garmin connect activity (uint32) ? OR ? timestamp ? / #4: time to finish (ms) / #254: message counter idx */ case 150: /* segment trackpoint (undocumented) ; see details below: */ /* #1: latitude / #2: longitude / #3: distance from start point / #4: elevation / #5: timer since start (ms) / #6: message counter index */ break; default: unknown_global_msg_nums.insert(def.global_msg_num); } last_msg_type = def.global_msg_num; } return count; } RideFile * run() { // get the Smart Recording parameters isGarminSmartRecording = appsettings->value(NULL, GC_GARMIN_SMARTRECORD,Qt::Checked); GarminHWM = appsettings->value(NULL, GC_GARMIN_HWMARK); if (GarminHWM.isNull() || GarminHWM.toInt() == 0) GarminHWM.setValue(25); // default to 25 seconds. // start rideFile = new RideFile; rideFile->setDeviceType("Garmin FIT"); rideFile->setWindHeading(0.0); rideFile->setWindSpeed(0.0); rideFile->setRecIntSecs(1.0); // this is a terrible assumption! if (!file.open(QIODevice::ReadOnly)) { delete rideFile; return NULL; } int data_size = 0; weatherXdata = new XDataSeries(); weatherXdata->name = "WEATHER"; weatherXdata->valuename << "WINDSPEED"; weatherXdata->valuename << "WINDHEADING"; weatherXdata->valuename << "TEMPERATURE"; weatherXdata->valuename << "HUMIDITY"; swimXdata = new XDataSeries(); swimXdata->name = "SWIM"; swimXdata->valuename << "TYPE"; swimXdata->valuename << "DURATION"; swimXdata->valuename << "STROKES"; try { // read the header int header_size = read_uint8(); if (header_size != 12 && header_size != 14) { errors << QString("bad header size: %1").arg(header_size); file.close(); delete rideFile; return NULL; } int protocol_version = read_uint8(); (void) protocol_version; // if the header size is 14 we have profile minor then profile major // version. We still don't do anything with this information int profile_version = read_uint16(false); // always littleEndian (void) profile_version; // not sure what to do with this data_size = read_uint32(false); // always littleEndian char fit_str[5]; if (file.read(fit_str, 4) != 4) { errors << "truncated header"; file.close(); delete rideFile; return NULL; } fit_str[4] = '\0'; if (strcmp(fit_str, ".FIT") != 0) { errors << QString("bad header, expected \".FIT\" but got \"%1\"").arg(fit_str); file.close(); delete rideFile; return NULL; } // read the rest of the header if (header_size == 14) read_uint16(false); } catch (TruncatedRead &e) { errors << "truncated file body"; return NULL; } int bytes_read = 0; bool stop = false; bool truncated = false; try { while (!stop && (bytes_read < data_size)) bytes_read += read_record(stop, errors); } catch (TruncatedRead &e) { errors << "truncated file body"; //file.close(); //delete rideFile; //return NULL; truncated = true; } if (stop) { file.close(); delete rideFile; return NULL; } else { if (!truncated) { try { int crc = read_uint16( false ); // always littleEndian (void) crc; } catch (TruncatedRead &e) { errors << "truncated file body"; return NULL; } } foreach(int num, unknown_global_msg_nums) qDebug() << QString("FitRideFile: unknown global message number %1; ignoring it").arg(num); foreach(int num, unknown_record_fields) qDebug() << QString("FitRideFile: unknown record field %1; ignoring it").arg(num); foreach(int num, unknown_base_type) qDebug() << QString("FitRideFile: unknown base type %1; skipped").arg(num); QString deviceInfo; foreach(QString info, deviceInfos) { deviceInfo += info; } rideFile->setTag("Device Info", deviceInfo); file.close(); if (weatherXdata->datapoints.count()>0) rideFile->addXData("WEATHER", weatherXdata); else delete weatherXdata; if (swimXdata->datapoints.count()>0) rideFile->addXData("SWIM", swimXdata); else delete swimXdata; return rideFile; } } }; RideFile *FitFileReader::openRideFile(QFile &file, QStringList &errors, QList*) const { QSharedPointer state(new FitFileReaderState(file, errors)); return state->run(); } // vi:expandtab tabstop=4 shiftwidth=4