// // SmartControl.c // // Copyright © 2017 Kinetic. All rights reserved. // // Integrated into golden cheetah by Eric Christoffersen 2020 (impolexg@outlook.com) #include "KurtSmartControl.h" #include #include #include #include "CalibrationData.h" #define SensorHz 10000 uint8_t smart_control_state_to_calibration_state(smart_control_calibration_state calibration_state) { switch(calibration_state) { case SMART_CONTROL_CALIBRATION_STATE_NOT_PERFORMED: return CALIBRATION_STATE_FAILURE; case SMART_CONTROL_CALIBRATION_STATE_INITIALIZING: return CALIBRATION_STATE_STARTING; case SMART_CONTROL_CALIBRATION_STATE_SPEED_UP: return CALIBRATION_STATE_POWER; case SMART_CONTROL_CALIBRATION_STATE_START_COASTING: case SMART_CONTROL_CALIBRATION_STATE_COASTING: return CALIBRATION_STATE_COAST; case SMART_CONTROL_CALIBRATION_STATE_SPEED_UP_DETECTED: return CALIBRATION_STATE_POWER; case SMART_CONTROL_CALIBRATION_STATE_COMPLETE: return CALIBRATION_STATE_SUCCESS; } return CALIBRATION_STATE_FAILURE; } typedef enum smart_control_command { SMART_CONTROL_COMMAND_SET_PERFORMANCE = 0x00, SMART_CONTROL_COMMAND_SPINDOWN_CALIBRATION = 0x03 } smart_control_command; uint8_t hash8WithSeed(uint8_t hash, const uint8_t *buffer, uint8_t length) { const uint8_t crc8_table[256] = { 0x00, 0x91, 0xe3, 0x72, 0x07, 0x96, 0xe4, 0x75, 0x0e, 0x9f, 0xed, 0x7c, 0x09, 0x98, 0xea, 0x7b, 0x1c, 0x8d, 0xff, 0x6e, 0x1b, 0x8a, 0xf8, 0x69, 0x12, 0x83, 0xf1, 0x60, 0x15, 0x84, 0xf6, 0x67, 0x38, 0xa9, 0xdb, 0x4a, 0x3f, 0xae, 0xdc, 0x4d, 0x36, 0xa7, 0xd5, 0x44, 0x31, 0xa0, 0xd2, 0x43, 0x24, 0xb5, 0xc7, 0x56, 0x23, 0xb2, 0xc0, 0x51, 0x2a, 0xbb, 0xc9, 0x58, 0x2d, 0xbc, 0xce, 0x5f, 0x70, 0xe1, 0x93, 0x02, 0x77, 0xe6, 0x94, 0x05, 0x7e, 0xef, 0x9d, 0x0c, 0x79, 0xe8, 0x9a, 0x0b, 0x6c, 0xfd, 0x8f, 0x1e, 0x6b, 0xfa, 0x88, 0x19, 0x62, 0xf3, 0x81, 0x10, 0x65, 0xf4, 0x86, 0x17, 0x48, 0xd9, 0xab, 0x3a, 0x4f, 0xde, 0xac, 0x3d, 0x46, 0xd7, 0xa5, 0x34, 0x41, 0xd0, 0xa2, 0x33, 0x54, 0xc5, 0xb7, 0x26, 0x53, 0xc2, 0xb0, 0x21, 0x5a, 0xcb, 0xb9, 0x28, 0x5d, 0xcc, 0xbe, 0x2f, 0xe0, 0x71, 0x03, 0x92, 0xe7, 0x76, 0x04, 0x95, 0xee, 0x7f, 0x0d, 0x9c, 0xe9, 0x78, 0x0a, 0x9b, 0xfc, 0x6d, 0x1f, 0x8e, 0xfb, 0x6a, 0x18, 0x89, 0xf2, 0x63, 0x11, 0x80, 0xf5, 0x64, 0x16, 0x87, 0xd8, 0x49, 0x3b, 0xaa, 0xdf, 0x4e, 0x3c, 0xad, 0xd6, 0x47, 0x35, 0xa4, 0xd1, 0x40, 0x32, 0xa3, 0xc4, 0x55, 0x27, 0xb6, 0xc3, 0x52, 0x20, 0xb1, 0xca, 0x5b, 0x29, 0xb8, 0xcd, 0x5c, 0x2e, 0xbf, 0x90, 0x01, 0x73, 0xe2, 0x97, 0x06, 0x74, 0xe5, 0x9e, 0x0f, 0x7d, 0xec, 0x99, 0x08, 0x7a, 0xeb, 0x8c, 0x1d, 0x6f, 0xfe, 0x8b, 0x1a, 0x68, 0xf9, 0x82, 0x13, 0x61, 0xf0, 0x85, 0x14, 0x66, 0xf7, 0xa8, 0x39, 0x4b, 0xda, 0xaf, 0x3e, 0x4c, 0xdd, 0xa6, 0x37, 0x45, 0xd4, 0xa1, 0x30, 0x42, 0xd3, 0xb4, 0x25, 0x57, 0xc6, 0xb3, 0x22, 0x50, 0xc1, 0xba, 0x2b, 0x59, 0xc8, 0xbd, 0x2c, 0x5e, 0xcf }; for (uint8_t byte_index = 0; byte_index < length; byte_index++) { hash = crc8_table[hash ^ buffer[byte_index]]; } return hash; } double smart_control_speed_for_ticks(uint16_t ticks) { if (ticks == 0 || ticks == 65535) { return 0; } return (6107.2561186) / ((double)ticks); } double smart_control_ticks_to_seconds(uint32_t ticks) { return (double)ticks / (double)SensorHz; } smart_control_power_data smart_control_process_power_data(const uint8_t *data, size_t size) { smart_control_power_data powerData; if (size >= 14 && size <= 20) { uint8_t hashSeed = 0x42; uint8_t inData[20]; for (size_t i = 0; i < size; ++i) { inData[i] = data[i]; } uint8_t hash = hash8WithSeed(hashSeed, &inData[size - 1], 1); for (unsigned index = 0; index < size - 1; index++) { inData[index] ^= hash; hash = hash8WithSeed(hash, &inData[index], 1); } powerData.mode = (smart_control_mode)inData[0]; powerData.targetResistance = ((uint16_t)inData[1] << 8) | (uint16_t)inData[2]; powerData.power = ((uint16_t)inData[3] << 8) | (uint16_t)inData[4]; powerData.cadenceRPM = inData[12]; if (size >= 18) { uint32_t metersPerHour = ((uint32_t)inData[13] << 24) | ((uint32_t)inData[14] << 16) | ((uint32_t)inData[15] << 8) | (uint32_t)inData[16]; powerData.speedKPH = metersPerHour / 1000.0; } else { uint16_t rollerTicks = ((uint16_t)inData[5] << 8) | (uint16_t)inData[6]; powerData.speedKPH = smart_control_speed_for_ticks(rollerTicks); } } else { powerData.mode = SMART_CONTROL_MODE_ERG; powerData.targetResistance = 0; powerData.cadenceRPM = 0; powerData.power = 0; powerData.speedKPH = 0; } return powerData; } smart_control_config_data smart_control_process_config_data(const uint8_t *data, size_t size) { uint8_t hashSeed = 0x42; uint8_t* inData = (uint8_t*)malloc(size); for (size_t i = 0; i < size; ++i) { inData[i] = data[i]; } uint8_t hash = hash8WithSeed(hashSeed, &inData[size - 1], 1); for (unsigned index = 0; index < size - 1; index++) { inData[index] ^= hash; hash = hash8WithSeed(hash, &inData[index], 1); } smart_control_config_data configData; if (size >= 5) { configData.updateRate = inData[0]; configData.tickRate = ((uint32_t)inData[1] << 16) | ((uint32_t)inData[2] << 8) | (uint32_t)inData[3]; configData.firmwareUpdateState = inData[4]; if (size >= 13) { configData.systemStatus = ((uint16_t)inData[5] << 8) | (uint16_t)inData[6]; configData.calibrationState = (smart_control_calibration_state)inData[7]; uint32_t spindownTicks = ((uint32_t)inData[8] << 24) | ((uint32_t)inData[9] << 16) | ((uint32_t)inData[10] << 8) | (uint32_t)inData[11]; configData.spindownTime = smart_control_ticks_to_seconds(spindownTicks); } if (size >= 15) { uint16_t metersPerHour = ((uint16_t)inData[12] << 8) | (uint16_t)inData[13]; configData.calibrationThresholdKPH = metersPerHour / 1000.0; } else { configData.calibrationThresholdKPH = 33.8; } if (size >= 18) { uint16_t metersPerHour = ((uint16_t)inData[14] << 8) | (uint16_t)inData[15]; configData.brakeCalibrationThresholdKPH = metersPerHour / 1000.0; configData.brakeStrength = inData[16]; } else { configData.brakeCalibrationThresholdKPH = 45; configData.brakeStrength = 55; } if (size >= 19) { configData.brakeOffset = inData[17]; } else { configData.brakeOffset = 128; } if (size >= 20) { configData.noiseFilter = inData[18]; } else { configData.noiseFilter = 1; } } else { configData.updateRate = 1; configData.tickRate = 10000; configData.firmwareUpdateState = 0; configData.systemStatus = 0; configData.calibrationState = SMART_CONTROL_CALIBRATION_STATE_NOT_PERFORMED; configData.spindownTime = 0; configData.calibrationThresholdKPH = 33.8; configData.brakeCalibrationThresholdKPH = 45; configData.brakeStrength = 55; configData.brakeOffset = 128; configData.noiseFilter = 1; } free(inData); return configData; } #ifndef MIN #pragma GCC diagnostic ignored "-Wtype-limits" #define MIN(a,b) (((a)<(b))?(a):(b)) #define MAX(a,b) (((a)>(b))?(a):(b)) #endif // Helper that generates random byte in range low to high uint8_t RandomByteInRange(unsigned low, unsigned high) { return (uint8_t)QRandomGenerator::global()->bounded(low, high); } QByteArray smart_control_set_mode_erg_command(uint16_t targetWatts) { smart_control_set_mode_erg_data data; uint16_t clamped = MAX(0, MIN(0xFFFF, targetWatts)); data.bytes[0] = SMART_CONTROL_COMMAND_SET_PERFORMANCE; data.bytes[1] = SMART_CONTROL_MODE_ERG; data.bytes[2] = (uint8_t)((uint16_t)clamped >> 8); data.bytes[3] = (uint8_t)((uint16_t)clamped); data.bytes[4] = RandomByteInRange(0, 0x100 - 1); // distrib(gen); // nonce arc4random_uniform(0x100); // nonce uint8_t dataLength = 5; // Encode Packet uint8_t hashSeed = 0x42; uint8_t hash = hash8WithSeed(hashSeed, &data.bytes[dataLength - 1], 1); for (uint8_t index = 0; index < dataLength - 1; index++) { uint8_t temp = data.bytes[index]; data.bytes[index] ^= hash; hash = hash8WithSeed(hash, &temp, 1); } return QByteArray((const char*)&data, sizeof(data)); } QByteArray smart_control_set_mode_fluid_command(uint8_t level) { smart_control_set_mode_fluid_data data; uint8_t clamped = MAX(0, MIN(9, level)); data.bytes[0] = SMART_CONTROL_COMMAND_SET_PERFORMANCE; data.bytes[1] = SMART_CONTROL_MODE_FLUID; data.bytes[2] = clamped; data.bytes[3] = RandomByteInRange(0, 0x100 - 1); //arc4random_uniform(0x100); // nonce uint8_t dataLength = 4; // Encode Packet uint8_t hashSeed = 0x42; uint8_t hash = hash8WithSeed(hashSeed, &data.bytes[dataLength - 1], 1); for (uint8_t index = 0; index < dataLength - 1; index++) { uint8_t temp = data.bytes[index]; data.bytes[index] ^= hash; hash = hash8WithSeed(hash, &temp, 1); } return QByteArray((const char*)&data, sizeof(data)); } QByteArray smart_control_set_mode_brake_command(float percent) { smart_control_set_mode_brake_data data; // normalize to 0-65535 float clamped = MAX(0, MIN(1, percent)); uint16_t normalized = (uint16_t) round(65535 * clamped); data.bytes[0] = SMART_CONTROL_COMMAND_SET_PERFORMANCE; data.bytes[1] = SMART_CONTROL_MODE_BRAKE; data.bytes[2] = normalized >> 8; data.bytes[3] = normalized; data.bytes[4] = RandomByteInRange(0, 0x100 - 1); //arc4random_uniform(0x100); // nonce uint8_t dataLength = 5; // Encode Packet uint8_t hashSeed = 0x42; uint8_t hash = hash8WithSeed(hashSeed, &data.bytes[dataLength - 1], 1); for (uint8_t index = 0; index < dataLength - 1; index++) { uint8_t temp = data.bytes[index]; data.bytes[index] ^= hash; hash = hash8WithSeed(hash, &temp, 1); } return QByteArray((const char*)&data, sizeof(data)); } QByteArray smart_control_set_mode_simulation_command(float weightKG, float rollingCoeff, float windCoeff, float grade, float windSpeedMPS) { smart_control_set_mode_simulation_data data; data.bytes[0] = SMART_CONTROL_COMMAND_SET_PERFORMANCE; data.bytes[1] = SMART_CONTROL_MODE_SIMULATION; // weight is in KGs ... multiply by 100 to get 2 points of precision uint16_t weight100 = (uint16_t) roundf(MIN(655.36, weightKG) * 100); data.bytes[2] = weight100 >> 8; data.bytes[3] = weight100; // Rolling coeff is < 1. multiply by 10,000 to get 5 points of precision // coeff cannot be larger than 6.5536 otherwise it rolls over ... uint16_t rr10000 = (uint16_t) roundf(MIN(6.5536, rollingCoeff) * 10000); data.bytes[4] = rr10000 >> 8; data.bytes[5] = rr10000; // Wind coeff is typically < 1. multiply by 10,000 to get 5 points of precision // coeff cannot be larger than 6.5536 otherwise it rolls over ... uint16_t wr10000 = (uint16_t) roundf(MIN(6.5536, windCoeff) * 10000); data.bytes[6] = wr10000 >> 8; data.bytes[7] = wr10000; // Grade is between -45.0 and 45.0 // Mulitply by 100 to get 2 points of precision int16_t grade100 = (int16_t) roundf(MAX(-45, MIN(45, grade)) * 100); data.bytes[8] = grade100 >> 8; data.bytes[9] = grade100; // windspeed is in meters / second. convert to CM / second int16_t windSpeedCM = (int16_t) roundf(windSpeedMPS * 100); data.bytes[10] = windSpeedCM >> 8; data.bytes[11] = windSpeedCM; data.bytes[12] = RandomByteInRange(0, 0x100 - 1); //arc4random_uniform(0x100); // nonce uint8_t dataLength = 13; // Encode Packet uint8_t hashSeed = 0x42; uint8_t hash = hash8WithSeed(hashSeed, &data.bytes[dataLength - 1], 1); for (uint8_t index = 0; index < dataLength - 1; index++) { uint8_t temp = data.bytes[index]; data.bytes[index] ^= hash; hash = hash8WithSeed(hash, &temp, 1); } return QByteArray((const char*)&data, sizeof(data)); } QByteArray smart_control_start_calibration_command(bool brakeCalibration) { smart_control_calibration_command_data data; data.bytes[0] = SMART_CONTROL_COMMAND_SPINDOWN_CALIBRATION; data.bytes[1] = 0x01; data.bytes[2] = brakeCalibration ? 0x01 : 0x00; data.bytes[3] = RandomByteInRange(0, 0x100 - 1); //arc4random_uniform(0x100); // nonce uint8_t dataLength = 4; // Encode Packet uint8_t hashSeed = 0x42; uint8_t hash = hash8WithSeed(hashSeed, &data.bytes[dataLength - 1], 1); for (uint8_t index = 0; index < dataLength - 1; index++) { uint8_t temp = data.bytes[index]; data.bytes[index] ^= hash; hash = hash8WithSeed(hash, &temp, 1); } return QByteArray((const char*)&data, sizeof(data)); } QByteArray smart_control_stop_calibration_command() { smart_control_calibration_command_data data; data.bytes[0] = SMART_CONTROL_COMMAND_SPINDOWN_CALIBRATION; data.bytes[1] = 0x00; data.bytes[2] = 0x00; data.bytes[3] = RandomByteInRange(0, 0x100 - 1); //arc4random_uniform(0x100); // nonce uint8_t dataLength = 4; // Encode Packet uint8_t hashSeed = 0x42; uint8_t hash = hash8WithSeed(hashSeed, &data.bytes[dataLength - 1], 1); for (uint8_t index = 0; index < dataLength - 1; index++) { uint8_t temp = data.bytes[index]; data.bytes[index] ^= hash; hash = hash8WithSeed(hash, &temp, 1); } return QByteArray((const char*)&data, sizeof(data)); }