/* * Copyright (c) 2011 Mark Liversedge (liversedge@gmail.com) * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation; either version 2 of the License, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., 51 * Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "RideFileCache.h" #include "MainWindow.h" #include "Zones.h" #include "HrZones.h" #include // for pow() #include #include #include #include // for qStableSort // cache from ride RideFileCache::RideFileCache(MainWindow *main, QString fileName, RideFile *passedride, bool check) : main(main), rideFileName(fileName), ride(passedride) { // resize all the arrays to zero wattsMeanMax.resize(0); hrMeanMax.resize(0); cadMeanMax.resize(0); nmMeanMax.resize(0); kphMeanMax.resize(0); xPowerMeanMax.resize(0); npMeanMax.resize(0); vamMeanMax.resize(0); wattsDistribution.resize(0); hrDistribution.resize(0); cadDistribution.resize(0); nmDistribution.resize(0); kphDistribution.resize(0); xPowerDistribution.resize(0); npDistribution.resize(0); // time in zone are fixed to 10 zone max wattsTimeInZone.resize(10); hrTimeInZone.resize(10); // Get info for ride file and cache file QFileInfo rideFileInfo(rideFileName); cacheFileName = rideFileInfo.path() + "/" + rideFileInfo.baseName() + ".cpx"; QFileInfo cacheFileInfo(cacheFileName); // is it up-to-date? if (cacheFileInfo.exists() && rideFileInfo.lastModified() <= cacheFileInfo.lastModified() && cacheFileInfo.size() >= (int)sizeof(struct RideFileCacheHeader)) { // we have a file, it is more recent than the ride file // but is it the latest version? RideFileCacheHeader head; QFile cacheFile(cacheFileName); if (cacheFile.open(QIODevice::ReadOnly) == true) { // read the header QDataStream inFile(&cacheFile); inFile.readRawData((char *) &head, sizeof(head)); cacheFile.close(); // is it as recent as we are? if (head.version == RideFileCacheVersion) { // Are the CP/LTHR values still correct // XXX todo // WE'RE GOOD if (check == false) readCache(); // if check is false we aren't just checking return; } } } // NEED TO UPDATE!! // not up-to-date we need to refresh from the ridefile if (ride) { // we got passed the ride - so update from that refreshCache(); } else { // we need to open it to update since we were not passed one QStringList errors; QFile file(rideFileName); ride = RideFileFactory::instance().openRideFile(main, file, errors); if (ride) { refreshCache(); delete ride; } ride = 0; } } // // DATA ACCESS // QVector & RideFileCache::meanMaxDates(RideFile::SeriesType series) { switch (series) { case RideFile::watts: return wattsMeanMaxDate; break; case RideFile::cad: return cadMeanMaxDate; break; case RideFile::hr: return hrMeanMaxDate; break; case RideFile::nm: return nmMeanMaxDate; break; case RideFile::kph: return kphMeanMaxDate; break; case RideFile::xPower: return xPowerMeanMaxDate; break; case RideFile::NP: return npMeanMaxDate; break; case RideFile::vam: return vamMeanMaxDate; break; default: //? dunno give em power anyway return wattsMeanMaxDate; break; } } QVector & RideFileCache::meanMaxArray(RideFile::SeriesType series) { switch (series) { case RideFile::watts: return wattsMeanMaxDouble; break; case RideFile::cad: return cadMeanMaxDouble; break; case RideFile::hr: return hrMeanMaxDouble; break; case RideFile::nm: return nmMeanMaxDouble; break; case RideFile::kph: return kphMeanMaxDouble; break; case RideFile::xPower: return xPowerMeanMaxDouble; break; case RideFile::NP: return npMeanMaxDouble; break; case RideFile::vam: return vamMeanMaxDouble; break; default: //? dunno give em power anyway return wattsMeanMaxDouble; break; } } QVector & RideFileCache::distributionArray(RideFile::SeriesType series) { switch (series) { case RideFile::watts: return wattsDistributionDouble; break; case RideFile::cad: return cadDistributionDouble; break; case RideFile::hr: return hrDistributionDouble; break; case RideFile::nm: return nmDistributionDouble; break; case RideFile::kph: return kphDistributionDouble; break; default: //? dunno give em power anyway return wattsMeanMaxDouble; break; } } // // COMPUTATION // void RideFileCache::refreshCache() { static bool writeerror=false; // update cache! QFile cacheFile(cacheFileName); if (cacheFile.open(QIODevice::WriteOnly) == true) { // ok so we are going to be able to write this stuff // so lets go recalculate it all compute(); QDataStream outFile(&cacheFile); // go write it out serialize(&outFile); // all done now, phew cacheFile.close(); } else if (writeerror == false) { // popup the first time... writeerror = true; QMessageBox err; QString errMessage = QString("Cannot create cache file %1.").arg(cacheFileName); err.setText(errMessage); err.setIcon(QMessageBox::Warning); err.exec(); return; } else { // send a console message instead... qDebug()<<"cannot create cache file"< 2:00, section two = 1:00 -> 3:00, etc. Example: Find 60s MM in 5-minute file +----------+----------+----------+----------+----------+ | minute 1 | minute 2 | minute 3 | minute 4 | minute 5 | +----------+----------+----------+----------+----------+ | |_MEAN_MAX_| | +---------------------+---------------------+----------+ | segment 1 | segment 3 | +----------+----------+----------+----------+----------+ | segment 2 | segment 4 | +---------------------+---------------------+ So no matter where the MEAN_MAX segment is located in time, it will be wholly contained in one segment. In practice, it is a little faster to make the windows smaller and overlap more: +----------+----------+----------+----------+----------+ | minute 1 | minute 2 | minute 3 | minute 4 | minute 5 | +----------+----------+----------+----------+----------+ | |_MEAN_MAX_| | +-------------+----------------------------------------+ | segment 1 | +--+----------+--+ | segment 2 | +--+----------+--+ | segment 3 | +--+----------+--+ | segment 4 | +--+----------+--+ | segment 5 | +--+----------+--+ | segment 6 | +--+----------+--+ | segment 7 | +--+----------+--+ | segment 8 | +--+----------+--+ | segment 9 | +-------------+ ... etc. ( This is because whenever the actual mean max energy is greater than a segment energy, we can skip the detail comparison within that segment altogether. The exact tradeoff for optimum performance depends on the distribution of the data. It's a pretty shallow curve. Values in the 1 minute to 1.5 minute range seem to work pretty well. ) 3 - for each two minute section, subtract the accumulated energy at the end of the section from the accumulated energy at the beginning of the section. That gives the energy for that section. 4 - in the first section, go second-by-second to find the maximum 60-second energy. This is our candidate for 60-second energy 5 - go down the sorted list of sections. If the energy in the next section is less than the 60-second energy in the best candidate so far, skip to the next section without examining it carefully, because the section cannot possibly have a one-minute section with greater energy. while (section->energy > candidate) { candidate=max(candidate, search(section, 60)); section++; } 6. candidate is the mean max for 60 seconds. Enhancements that are not implemented: - The two-minute overlapping sections can be reused for 59 seconds, etc. The algorithm will degrade to exhaustive search if the looked-for interval is much smaller than the enclosing interval. - The sections can be sorted by energy in reverse order before step #4. Then the search in #5 can be terminated early, the first time it fails. In practice, the comparisons in the search outnumber the saved comparisons. But this might be a useful optimization if the windows are reused per the previous idea. */ data_t * MeanMaxComputer::integrate_series(cpintdata &data) { data_t *integrated= (data_t *)malloc(sizeof(data_t)*(data.points.size()+1)); //XXX use QVector... todo int i; data_t acc=0; for (i=0; icandidate) { candidate=test_energy; best_i=i; } } if (offset) *offset=best_i; return candidate; } data_t MeanMaxComputer::divided_max_mean(data_t *dataseries_i, int datalength, int length, int *offset) { int shift=length; //if sorting data the following is an important speedup hack if (shift>180) shift=180; int window_length=length+shift; if (window_length>datalength) window_length=datalength; // put down as many windows as will fit without overrunning data int start=0; int end=0; data_t energy=0; data_t candidate=0; int this_offset=0; for (start=0; start+window_length<=datalength; start+=shift) { end=start+window_length; energy=dataseries_i[end]-dataseries_i[start]; if (energy < candidate) { continue; } data_t window_mm=partial_max_mean(dataseries_i, start, end, length, &this_offset); if (window_mm>candidate) { candidate=window_mm; if (offset) *offset=this_offset; } } // if the overlapping windows don't extend to the end of the data, // let's tack another one on at the end if (end= candidate) { data_t window_mm=partial_max_mean(dataseries_i, start, end, length, &this_offset); if (window_mm>candidate) { candidate=window_mm; if (offset) *offset=this_offset; } } } return candidate; } void MeanMaxComputer::run() { // xPower and NP need watts to be present RideFile::SeriesType baseSeries = (series == RideFile::xPower || series == RideFile::NP) ? RideFile::watts : series; if (series == RideFile::vam) baseSeries = RideFile::alt; // only bother if the data series is actually present if (ride->isDataPresent(baseSeries) == false) return; // if we want decimal places only keep to 1 dp max // this is a factor that is applied at the end to // convert from high-precision double to long // e.g. 145.456 becomes 1455 if we want decimals // and becomes 145 if we don't double decimals = RideFile::decimalsFor(baseSeries) ? 10 : 1; // decritize the data series - seems wrong, since it just // rounds to the nearest second - what if the recIntSecs // is less than a second? Has been used for a long while // so going to leave in tact for now - apart from the // addition of code to fill in gaps in recording since // they affect the NP/xPower algorithm badly and will skew // the calculations of >6m since windowsize is used to // determine segment duration rather than examining the // timestamps on each sample cpintdata data; data.rec_int_ms = (int) round(ride->recIntSecs() * 1000.0); double lastsecs = 0; foreach (const RideFilePoint *p, ride->dataPoints()) { // fill in any gaps in recording - use same dodgy rounding as before int count = (p->secs - lastsecs - ride->recIntSecs()) / ride->recIntSecs(); for(int i=0; irecIntSecs() *1000.0)/1000), 0)); lastsecs = p->secs; double secs = round(p->secs * 1000.0) / 1000; if (secs > 0) data.points.append(cpintpoint(secs, (int) round(p->value(baseSeries)))); } // don't bother with insufficient data if (!data.points.count()) return; int total_secs = (int) ceil(data.points.back().secs); // don't allow data more than two days // was one week, but no single ride is longer // than 2 days, even if you are doing RAAM if (total_secs > 2*24*60*60) return; // // Pre-process the data for NP, xPower and VAM // // VAM - adjust to Vertical Ascent per Hour if (series == RideFile::vam) { double lastAlt=0; for (int i=0; i5m in a second thats a data error too! if (!lastAlt || (data.points[i].value - lastAlt) > 5) lastAlt=data.points[i].value; // NOTE: It is 360 not 3600 because Altitude is factored for decimal places // since it is the base data series, but we are calculating VAM double vam = (((data.points[i].value - lastAlt) * 360)/ride->recIntSecs()); if (vam < 0) vam = 0; lastAlt = data.points[i].value; data.points[i].value = vam; } } // NP - rolling 30s avg ^ 4 if (series == RideFile::NP) { int rollingwindowsize = 30 / ride->recIntSecs(); // no point doing a rolling average if the // sample rate is greater than the rolling average // window!! if (rollingwindowsize > 1) { QVector rolling(rollingwindowsize); int index = 0; double sum = 0; // loop over the data and convert to a rolling // average for the given windowsize for (int i=0; i= rollingwindowsize-1) ? 0 : index+1; } } } // xPower - 25s EWA - uses same algorithm as BikeScore.cpp if (series == RideFile::xPower) { const double exp = 2.0f / ((25.0f / ride->recIntSecs()) + 1.0f); const double rem = 1.0f - exp; int rollingwindowsize = 25 / ride->recIntSecs(); double ewma = 0.0; double sum = 0.0; // as we ramp up // no point doing a rolling average if the // sample rate is greater than the rolling average // window!! if (rollingwindowsize > 1) { // loop over the data and convert to a EWMA for (int i=0; i ride_bests(total_secs + 1); data_t *dataseries_i = integrate_series(data); for (int i=1; irecIntSecs(); data_t val = c / (data_t)i; if (sec < ride_bests.size()) { if (series == RideFile::NP || series == RideFile::xPower) ride_bests[sec] = pow(val, 0.25f); else ride_bests[sec] = val; } } free(dataseries_i); // // FILL IN THE GAPS AND FILL TARGET ARRAY // // We want to present a full set of bests for // every duration so the data interface for this // cache can remain the same, but the level of // accuracy/granularity can change in here in the // future if some fancy new algorithm arrives // double last = 0; array.resize(ride_bests.count()); for (int i=ride_bests.size()-1; i; i--) { if (ride_bests[i] == 0) ride_bests[i]=last; else last = ride_bests[i]; // convert from double to long, preserving the // precision by applying a multiplier array[i] = ride_bests[i] * decimals; } } void RideFileCache::computeDistribution(QVector &array, RideFile::SeriesType series) { // only bother if the data series is actually present if (ride->isDataPresent(series) == false) return; // get zones that apply, if any int zoneRange = main->zones() ? main->zones()->whichRange(ride->startTime().date()) : -1; int hrZoneRange = main->hrZones() ? main->hrZones()->whichRange(ride->startTime().date()) : -1; if (zoneRange != -1) CP=main->zones()->getCP(zoneRange); else CP=0; if (hrZoneRange != -1) LTHR=main->hrZones()->getLT(hrZoneRange); else LTHR=0; // setup the array based upon the ride int decimals = RideFile::decimalsFor(series) ? 1 : 0; double min = RideFile::minimumFor(series) * pow(10, decimals); double max = RideFile::maximumFor(series) * pow(10, decimals); // lets resize the array to the right size // it will also initialise with a default value // which for longs is handily zero array.resize(max-min); foreach(RideFilePoint *dp, ride->dataPoints()) { double value = dp->value(series); float lvalue = value * pow(10, decimals); // watts time in zone if (series == RideFile::watts && zoneRange != -1) wattsTimeInZone[main->zones()->whichZone(zoneRange, dp->value(series))] += ride->recIntSecs(); // hr time in zone if (series == RideFile::hr && hrZoneRange != -1) hrTimeInZone[main->hrZones()->whichZone(hrZoneRange, dp->value(series))] += ride->recIntSecs(); int offset = lvalue - min; if (offset >= 0 && offset < array.size()) array[offset] += ride->recIntSecs(); } } // // AGGREGATE FOR A GIVEN DATE RANGE // static QDate dateFromFileName(const QString filename) { QRegExp rx("^(\\d\\d\\d\\d)_(\\d\\d)_(\\d\\d)_\\d\\d_\\d\\d_\\d\\d\\..*$"); if (rx.exactMatch(filename)) { QDate date(rx.cap(1).toInt(), rx.cap(2).toInt(), rx.cap(3).toInt()); if (date.isValid()) return date; } return QDate(); // nil date } // select and update bests static void meanMaxAggregate(QVector &into, QVector &other, QVector&dates, QDate rideDate) { if (into.size() < other.size()) { into.resize(other.size()); dates.resize(other.size()); } for (int i=0; i into[i]) { into[i] = other[i]; dates[i] = rideDate; } } // resize into and then sum the arrays static void distAggregate(QVector &into, QVector &other) { if (into.size() < other.size()) into.resize(other.size()); for (int i=0; isetCursor(Qt::WaitCursor); // Iterate over the ride files (not the cpx files since they /might/ not // exist, or /might/ be out of date. foreach (QString rideFileName, RideFileFactory::instance().listRideFiles(main->home)) { QDate rideDate = dateFromFileName(rideFileName); if (rideDate >= start && rideDate <= end) { // get its cached values (will refresh if needed...) RideFileCache rideCache(main, main->home.absolutePath() + "/" + rideFileName); // lets aggregate meanMaxAggregate(wattsMeanMaxDouble, rideCache.wattsMeanMaxDouble, wattsMeanMaxDate, rideDate); meanMaxAggregate(hrMeanMaxDouble, rideCache.hrMeanMaxDouble, hrMeanMaxDate, rideDate); meanMaxAggregate(cadMeanMaxDouble, rideCache.cadMeanMaxDouble, cadMeanMaxDate, rideDate); meanMaxAggregate(nmMeanMaxDouble, rideCache.nmMeanMaxDouble, nmMeanMaxDate, rideDate); meanMaxAggregate(kphMeanMaxDouble, rideCache.kphMeanMaxDouble, kphMeanMaxDate, rideDate); meanMaxAggregate(xPowerMeanMaxDouble, rideCache.xPowerMeanMaxDouble, xPowerMeanMaxDate, rideDate); meanMaxAggregate(npMeanMaxDouble, rideCache.npMeanMaxDouble, npMeanMaxDate, rideDate); meanMaxAggregate(vamMeanMaxDouble, rideCache.vamMeanMaxDouble, vamMeanMaxDate, rideDate); distAggregate(wattsDistributionDouble, rideCache.wattsDistributionDouble); distAggregate(hrDistributionDouble, rideCache.hrDistributionDouble); distAggregate(cadDistributionDouble, rideCache.cadDistributionDouble); distAggregate(nmDistributionDouble, rideCache.nmDistributionDouble); distAggregate(kphDistributionDouble, rideCache.kphDistributionDouble); distAggregate(xPowerDistributionDouble, rideCache.xPowerDistributionDouble); distAggregate(npDistributionDouble, rideCache.npDistributionDouble); // cumulate timeinzones for (int i=0; i<10; i++) { hrTimeInZone[i] += rideCache.hrTimeInZone[i]; wattsTimeInZone[i] += rideCache.wattsTimeInZone[i]; } } } // set the cursor back to normal main->setCursor(Qt::ArrowCursor); } // // PERSISTANCE // void RideFileCache::serialize(QDataStream *out) { RideFileCacheHeader head; // write header head.version = RideFileCacheVersion; head.CP = CP; head.LTHR = LTHR; head.wattsMeanMaxCount = wattsMeanMax.size(); head.hrMeanMaxCount = hrMeanMax.size(); head.cadMeanMaxCount = cadMeanMax.size(); head.nmMeanMaxCount = nmMeanMax.size(); head.kphMeanMaxCount = kphMeanMax.size(); head.xPowerMeanMaxCount = xPowerMeanMax.size(); head.npMeanMaxCount = npMeanMax.size(); head.vamMeanMaxCount = vamMeanMax.size(); head.wattsDistCount = wattsDistribution.size(); head.xPowerDistCount = xPowerDistribution.size(); head.npDistCount = xPowerDistribution.size(); head.hrDistCount = hrDistribution.size(); head.cadDistCount = cadDistribution.size(); head.nmDistrCount = nmDistribution.size(); head.kphDistCount = kphDistribution.size(); out->writeRawData((const char *) &head, sizeof(head)); // write meanmax out->writeRawData((const char *) wattsMeanMax.data(), sizeof(float) * wattsMeanMax.size()); out->writeRawData((const char *) hrMeanMax.data(), sizeof(float) * hrMeanMax.size()); out->writeRawData((const char *) cadMeanMax.data(), sizeof(float) * cadMeanMax.size()); out->writeRawData((const char *) nmMeanMax.data(), sizeof(float) * nmMeanMax.size()); out->writeRawData((const char *) kphMeanMax.data(), sizeof(float) * kphMeanMax.size()); out->writeRawData((const char *) xPowerMeanMax.data(), sizeof(float) * xPowerMeanMax.size()); out->writeRawData((const char *) npMeanMax.data(), sizeof(float) * npMeanMax.size()); out->writeRawData((const char *) vamMeanMax.data(), sizeof(float) * vamMeanMax.size()); // write dist out->writeRawData((const char *) wattsDistribution.data(), sizeof(float) * wattsDistribution.size()); out->writeRawData((const char *) hrDistribution.data(), sizeof(float) * hrDistribution.size()); out->writeRawData((const char *) cadDistribution.data(), sizeof(float) * cadDistribution.size()); out->writeRawData((const char *) nmDistribution.data(), sizeof(float) * nmDistribution.size()); out->writeRawData((const char *) kphDistribution.data(), sizeof(float) * kphDistribution.size()); out->writeRawData((const char *) xPowerDistribution.data(), sizeof(float) * xPowerDistribution.size()); out->writeRawData((const char *) npDistribution.data(), sizeof(float) * npDistribution.size()); // time in zone out->writeRawData((const char *) wattsTimeInZone.data(), sizeof(float) * wattsTimeInZone.size()); out->writeRawData((const char *) hrTimeInZone.data(), sizeof(float) * hrTimeInZone.size()); } void RideFileCache::readCache() { RideFileCacheHeader head; QFile cacheFile(cacheFileName); if (cacheFile.open(QIODevice::ReadOnly) == true) { QDataStream inFile(&cacheFile); inFile.readRawData((char *) &head, sizeof(head)); // resize all the arrays to fit wattsMeanMax.resize(head.wattsMeanMaxCount); hrMeanMax.resize(head.hrMeanMaxCount); cadMeanMax.resize(head.cadMeanMaxCount); nmMeanMax.resize(head.nmMeanMaxCount); kphMeanMax.resize(head.kphMeanMaxCount); npMeanMax.resize(head.npMeanMaxCount); vamMeanMax.resize(head.vamMeanMaxCount); xPowerMeanMax.resize(head.xPowerMeanMaxCount); wattsDistribution.resize(head.wattsDistCount); hrDistribution.resize(head.hrDistCount); cadDistribution.resize(head.cadDistCount); nmDistribution.resize(head.nmDistrCount); kphDistribution.resize(head.kphDistCount); xPowerDistribution.resize(head.xPowerDistCount); npDistribution.resize(head.npDistCount); // read in the arrays inFile.readRawData((char *) wattsMeanMax.data(), sizeof(float) * wattsMeanMax.size()); inFile.readRawData((char *) hrMeanMax.data(), sizeof(float) * hrMeanMax.size()); inFile.readRawData((char *) cadMeanMax.data(), sizeof(float) * cadMeanMax.size()); inFile.readRawData((char *) nmMeanMax.data(), sizeof(float) * nmMeanMax.size()); inFile.readRawData((char *) kphMeanMax.data(), sizeof(float) * kphMeanMax.size()); inFile.readRawData((char *) xPowerMeanMax.data(), sizeof(float) * xPowerMeanMax.size()); inFile.readRawData((char *) npMeanMax.data(), sizeof(float) * npMeanMax.size()); inFile.readRawData((char *) vamMeanMax.data(), sizeof(float) * vamMeanMax.size()); // write dist inFile.readRawData((char *) wattsDistribution.data(), sizeof(float) * wattsDistribution.size()); inFile.readRawData((char *) hrDistribution.data(), sizeof(float) * hrDistribution.size()); inFile.readRawData((char *) cadDistribution.data(), sizeof(float) * cadDistribution.size()); inFile.readRawData((char *) nmDistribution.data(), sizeof(float) * nmDistribution.size()); inFile.readRawData((char *) kphDistribution.data(), sizeof(float) * kphDistribution.size()); inFile.readRawData((char *) xPowerDistribution.data(), sizeof(float) * xPowerDistribution.size()); inFile.readRawData((char *) npDistribution.data(), sizeof(float) * npDistribution.size()); // time in zone inFile.readRawData((char *) wattsTimeInZone.data(), sizeof(float) * 10); inFile.readRawData((char *) hrTimeInZone.data(), sizeof(float) * 10); // setup the doubles the users use doubleArray(wattsMeanMaxDouble, wattsMeanMax, RideFile::watts); doubleArray(hrMeanMaxDouble, hrMeanMax, RideFile::hr); doubleArray(cadMeanMaxDouble, cadMeanMax, RideFile::cad); doubleArray(nmMeanMaxDouble, nmMeanMax, RideFile::nm); doubleArray(kphMeanMaxDouble, kphMeanMax, RideFile::kph); doubleArray(npMeanMaxDouble, npMeanMax, RideFile::NP); doubleArray(vamMeanMaxDouble, vamMeanMax, RideFile::vam); doubleArray(xPowerMeanMaxDouble, xPowerMeanMax, RideFile::xPower); doubleArray(wattsDistributionDouble, wattsDistribution, RideFile::watts); doubleArray(hrDistributionDouble, hrDistribution, RideFile::hr); doubleArray(cadDistributionDouble, cadDistribution, RideFile::cad); doubleArray(nmDistributionDouble, nmDistribution, RideFile::nm); doubleArray(kphDistributionDouble, kphDistribution, RideFile::kph); doubleArray(xPowerDistributionDouble, xPowerDistribution, RideFile::xPower); doubleArray(npDistributionDouble, npDistribution, RideFile::NP); cacheFile.close(); } } // unpack the longs into a double array void RideFileCache::doubleArray(QVector &into, QVector &from, RideFile::SeriesType series) { double divisor = RideFile::decimalsFor(series) ? 10 : 1; into.resize(from.size()); for(int i=0; i