
POCloud Data Logger
Written by Patrick McDonagh, Henry Pump

Prerequisites
NodeJS
Python 2.7
npm
MySQL
Bower

Installation
1. Clone this repository using either HTTPS:

 git clone http://<USERNAME>@bitbucket.poconsole.net/scm/pocloud/tag-
server.git

2. Change directory to the "www" folder

 cd tag-server/www

3. Install necessary npm packages

 npm install

4. Install necessary bower packages

 bower install

5. Create init.d scripts

 INFO HERE COMING SOON

6. Test Web Server functionality

 sails lift

Proceed to http://:3000 to test the web server and set up tags.

7. Enter tag information in web server.

8. Test the Python datalogger functiality.

 python python/tagserver.py

The program should return messages saying it has stored values. If errors occur, check
the PLC ip address. If errors persist, contact Henry Pump.

9. Start the init.d scripts so the programs run in the background.

/etc/int.d/tagserver start

and

/etc/init.d/website start
OR
forever www/app.js

Database Documentation
MySQL Tables

+---------------------+
| Tables_in_poconsole |
+---------------------+
| config |
| data_types |
| device_types |
| devices |
| tag_classes |
| tag_vals |
| tags |
+---------------------+

config Table
Holds parameter/val pairs for configuration parameters

+-----------+------------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-----------+------------------+------+-----+---------+----------------+
id	int(10) unsigned	NO	PRI	NULL	auto_increment
parameter	varchar(255)	YES	UNI	NULL	
val	varchar(255)	YES		NULL	
createdAt	datetime	YES		NULL	
updatedAt	datetime	YES		NULL	
+-----------+------------------+------+-----+---------+----------------+

data_types Table
Holds all possible data types

+-----------+------------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-----------+------------------+------+-----+---------+----------------+
id	int(10) unsigned	NO	PRI	NULL	auto_increment
data_type	varchar(255)	YES	UNI	NULL	
createdAt	datetime	YES		NULL	
updatedAt	datetime	YES		NULL	
+-----------+------------------+------+-----+---------+----------------+

device_types Table

Holds all possible device types

+-----------+------------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-----------+------------------+------+-----+---------+----------------+
id	int(10) unsigned	NO	PRI	NULL	auto_increment
dType	varchar(255)	YES	UNI	NULL	
createdAt	datetime	YES		NULL	
updatedAt	datetime	YES		NULL	
+-----------+------------------+------+-----+---------+----------------+

devices Table
Holds device configuration.

devices.device_type = device_types.dType

+-------------+------------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-------------+------------------+------+-----+---------+----------------+
id	int(10) unsigned	NO	PRI	NULL	auto_increment
device_type	int(11)	YES		NULL	
address	varchar(255)	YES		NULL	
createdAt	datetime	YES		NULL	
updatedAt	datetime	YES		NULL	
+-------------+------------------+------+-----+---------+----------------+

tag_classes Table
Holds all possible tag classes. All Data Logger tags are "Custom" (id=5)

+-------------+------------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-------------+------------------+------+-----+---------+----------------+
id	int(10) unsigned	NO	PRI	NULL	auto_increment
class_type	varchar(255)	YES	UNI	NULL	
description	varchar(255)	YES		NULL	
createdAt	datetime	YES		NULL	
updatedAt	datetime	YES		NULL	
+-------------+------------------+------+-----+---------+----------------+

tag_vals Table
Holds stored measurements of values of tags.

tag_vals.tagID = tags.id

+-----------+------------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-----------+------------------+------+-----+---------+----------------+
id	int(10) unsigned	NO	PRI	NULL	auto_increment
tagID	int(11)	YES		NULL	
val	float	YES		NULL	
createdAt	datetime	YES		NULL	
updatedAt	datetime	YES		NULL	
+-----------+------------------+------+-----+---------+----------------+

tags Table
Holds the scan-list of tags to be evaluated.

tag.tag_class = tag_classes.id

tag.deviceID = devices.id

tag.data_type = data_types.id

+------------------+------------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+------------------+------------------+------+-----+---------+----------------+
id	int(10) unsigned	NO	PRI	NULL	auto_increment
name	varchar(255)	YES		NULL	
tag_class	int(11)	YES		NULL	
tag	varchar(255)	YES		NULL	
deviceID	int(11)	YES		NULL	
description	varchar(255)	YES		NULL	
data_type	int(11)	YES		NULL	
change_threshold	float	YES		NULL	
guarantee_sec	int(11)	YES		NULL	
map_function	varchar(255)	YES		NULL	
units	varchar(255)	YES		NULL	
minExpected	float	YES		NULL	
maxExpected	float	YES		NULL	
createdAt	datetime	YES		NULL	
updatedAt	datetime	YES		NULL	
+------------------+------------------+------+-----+---------+----------------+

Web API
The web API provides a REST-ful API to access the tags and values stored in the database.

Devices
GET /device
Returns all the devices stored in the database

Returns:

[
 {
 "device_type": {
 "id": 1,
 "dType": "CLX",
 "createdAt": "2016-04-27T14:10:35.000Z",
 "updatedAt": "2016-04-29T17:02:15.000Z"
 },
 "id": 1,
 "address": "10.10.10.3",
 "createdAt": "2016-04-27T14:19:20.000Z",
 "updatedAt": "2016-04-29T17:02:15.000Z"
 },
 {
 "device_type": {
 "id": 2,
 "dType": "Micro800",
 "createdAt": "2016-04-27T14:10:43.000Z",
 "updatedAt": "2016-04-27T14:10:43.000Z"
 },
 "id": 11,
 "address": "192.168.1.20",
 "createdAt": "2016-04-29T21:36:28.000Z",
 "updatedAt": "2016-04-29T21:36:28.000Z"
 }
]

GET /device/
Returns only the information about the specific device

Returns:

[
 {
 "device_type": {
 "id": 1,
 "dType": "CLX",
 "createdAt": "2016-04-27T14:10:35.000Z",
 "updatedAt": "2016-04-29T17:02:15.000Z"
 },
 "id": 1,
 "address": "10.10.10.3",
 "createdAt": "2016-04-27T14:19:20.000Z",
 "updatedAt": "2016-04-29T17:02:15.000Z"
 }
]

POST /device
Adds a new device to the database

Parameters:

{
 address: < URL of the device >,
 device_type: < ID of device type>
}

UPDATE /device/
Updates a device in the database

Parameters:

{
 address: < URL of the device >,
 device_type: < ID of device type>
}

DELETE /device/
Deletes a device from the database

Tags
GET /tag
Returns all the tags stored in the database

Returns:

[
 {
 "tag_class": {
 "id": 5,
 "class_type": "custom",
 "description": "User-Selected Tags",
 "createdAt": "2016-04-27T14:17:54.000Z",
 "updatedAt": "2016-04-27T14:17:54.000Z"
 },
 "deviceID": {
 "id": 1,
 "address": "10.10.10.3",
 "createdAt": "2016-04-27T14:19:20.000Z",
 "updatedAt": "2016-04-29T17:02:15.000Z",
 "device_type": 1
 },
 "data_type": {
 "id": 1,
 "data_type": "float",
 "createdAt": "2016-04-27T22:37:48.000Z",
 "updatedAt": "2016-04-29T17:02:15.000Z"
 },
 "id": 1,
 "name": "Test Tag",
 "tag": "testtag.val",
 "description": "changed description",
 "change_threshold": 5,
 "guarantee_sec": 3600,
 "map_function": null,
 "units": "degF",
 "minExpected": 0,
 "maxExpected": 1000,
 "createdAt": "2016-04-27T14:21:37.000Z",
 "updatedAt": "2016-04-29T16:17:02.000Z"
 },
 {
 "tag_class": {
 "id": 5,

 "class_type": "custom",
 "description": "User-Selected Tags",
 "createdAt": "2016-04-27T14:17:54.000Z",
 "updatedAt": "2016-04-27T14:17:54.000Z"
 },
 "deviceID": {
 "id": 1,
 "address": "10.10.10.3",
 "createdAt": "2016-04-27T14:19:20.000Z",
 "updatedAt": "2016-04-29T17:02:15.000Z",
 "device_type": 1
 },
 "data_type": {
 "id": 1,
 "data_type": "float",
 "createdAt": "2016-04-27T22:37:48.000Z",
 "updatedAt": "2016-04-29T17:02:15.000Z"
 },
 "id": 3,
 "name": "Tag 3 Test",
 "tag": "Tag3.val",
 "description": "This is another randomly generated tag",
 "change_threshold": 5,
 "guarantee_sec": 3600,
 "map_function": null,
 "units": "lbs",
 "minExpected": 0,
 "maxExpected": 100,
 "createdAt": "2016-04-29T17:00:54.000Z",
 "updatedAt": "2016-04-29T17:02:15.000Z"
 }
]

GET /tag/
Returns only the information about the specified tag

Returns:

[
 {
 "tag_class": {
 "id": 5,
 "class_type": "custom",
 "description": "User-Selected Tags",
 "createdAt": "2016-04-27T14:17:54.000Z",
 "updatedAt": "2016-04-27T14:17:54.000Z"
 },
 "deviceID": {
 "id": 1,
 "address": "10.10.10.3",
 "createdAt": "2016-04-27T14:19:20.000Z",
 "updatedAt": "2016-04-29T17:02:15.000Z",
 "device_type": 1
 },
 "data_type": {
 "id": 1,
 "data_type": "float",
 "createdAt": "2016-04-27T22:37:48.000Z",
 "updatedAt": "2016-04-29T17:02:15.000Z"
 },
 "id": 1,
 "name": "Test Tag",
 "tag": "testtag.val",
 "description": "changed description",
 "change_threshold": 5,
 "guarantee_sec": 3600,
 "map_function": null,
 "units": "degF",
 "minExpected": 0,
 "maxExpected": 1000,
 "createdAt": "2016-04-27T14:21:37.000Z",
 "updatedAt": "2016-04-29T16:17:02.000Z"
 }
]

POST /tag
Adds a new tag to the scan list

Parameters

{
 tag: < Tag name in PLC >,
 name: < Vanity Name >,
 tag_class: 5,
 deviceID: < device ID of the source device >,
 units: < units >,
 minExpected: < Minimum Expected value (used for gauges) >,
 maxExpected: < Maximum Expected value (used for gauges) >,
 guarantee_sec: < Maximum time between stored measurements >,
 change_threshold: < amount change to require data to be stored >,
 description: < description of the tag >,
 data_type: < data type ID for the tag >
}

UPDATE /tag/
Updates a tag in the scan list

Parameters

{
 tag: < Tag name in PLC >,
 name: < Vanity Name >,
 tag_class: 5,
 deviceID: < device ID of the source device >,
 units: < units >,
 minExpected: < Minimum Expected value (used for gauges) >,
 maxExpected: < Maximum Expected value (used for gauges) >,
 guarantee_sec: < Maximum time between stored measurements >,
 change_threshold: < amount change to require data to be stored >,
 description: < description of the tag >,
 data_type: < data type ID for the tag >
}

DELETE /tag/
Deletes a tag in the scan list

Tag Values
GET /tag_val
Gets all values in the database

Returns:

[
 {
 "tagID": {
 "id": 1,
 "name": "Test Tag",
 "tag": "testtag.val",
 "description": "changed description",
 "change_threshold": 5,
 "guarantee_sec": 3600,
 "map_function": null,
 "units": "degF",
 "minExpected": 0,
 "maxExpected": 1000,
 "createdAt": "2016-04-27T14:21:37.000Z",
 "updatedAt": "2016-04-29T16:17:02.000Z",
 "tag_class": 5,
 "deviceID": 1,
 "data_type": 1
 },
 "id": 1,
 "val": 3.14159,
 "createdAt": "2016-04-27T14:26:58.000Z",
 "updatedAt": "2016-04-27T14:26:58.000Z"
 },
 {
 "tagID": {
 "id": 1,
 "name": "Test Tag",
 "tag": "testtag.val",
 "description": "changed description",
 "change_threshold": 5,
 "guarantee_sec": 3600,
 "map_function": null,
 "units": "degF",
 "minExpected": 0,
 "maxExpected": 1000,
 "createdAt": "2016-04-27T14:21:37.000Z",
 "updatedAt": "2016-04-29T16:17:02.000Z",
 "tag_class": 5,
 "deviceID": 1,
 "data_type": 1
 },
 "id": 2,
 "val": 12.2334,
 "createdAt": "2016-04-27T22:40:38.000Z",

 "updatedAt": "2016-04-27T22:40:38.000Z"
 },
 {
 "tagID": {
 "id": 1,
 "name": "Test Tag",
 "tag": "testtag.val",
 "description": "changed description",
 "change_threshold": 5,
 "guarantee_sec": 3600,
 "map_function": null,
 "units": "degF",
 "minExpected": 0,
 "maxExpected": 1000,
 "createdAt": "2016-04-27T14:21:37.000Z",
 "updatedAt": "2016-04-29T16:17:02.000Z",
 "tag_class": 5,
 "deviceID": 1,
 "data_type": 1
 },
 "id": 3,
 "val": 10.6255,
 "createdAt": "2016-04-27T22:40:48.000Z",
 "updatedAt": "2016-04-27T22:40:48.000Z"
 },
 {
 "tagID": {
 "id": 1,
 "name": "Test Tag",
 "tag": "testtag.val",
 "description": "changed description",
 "change_threshold": 5,
 "guarantee_sec": 3600,
 "map_function": null,
 "units": "degF",
 "minExpected": 0,
 "maxExpected": 1000,
 "createdAt": "2016-04-27T14:21:37.000Z",
 "updatedAt": "2016-04-29T16:17:02.000Z",
 "tag_class": 5,
 "deviceID": 1,
 "data_type": 1
 },
 "id": 4,
 "val": 6.06918,
 "createdAt": "2016-04-27T22:40:58.000Z",
 "updatedAt": "2016-04-27T22:40:58.000Z"

 }
]

GET /tag_val/latest
Returns the latest stored value for all tags

Returns:

[
 {
 "id": 13931,
 "dtime": "2016-05-02T23:04:17.000Z",
 "t_id": 1,
 "name": "Test Tag",
 "tag": "testtag.val",
 "val": 162.312,
 "units": "degF",
 "description": "changed description",
 "minExpected": 0,
 "maxExpected": 1000
 },
 {
 "id": 13932,
 "dtime": "2016-05-02T23:04:17.000Z",
 "t_id": 3,
 "name": "Tag 3 Test",
 "tag": "Tag3.val",
 "val": -2.93347,
 "units": "lbs",
 "description": "This is another randomly generated tag",
 "minExpected": 0,
 "maxExpected": 100
 }
]

DELETE /tag_val/
Deletes value for the specified ID.

Web API Advanced Parameters
Reference the Waterline Documentation to learn about the advanced query parameters.

https://github.com/balderdashy/waterline-docs/blob/master/queries/query-language.md

